Mexican Interjet Flight 2605 making first commercial round-trip flight with Honeywell Green Jet Fuel
JAPEX to invest ¥65-70B in further oil sands development in Canada

NOAA study: Increase in stratospheric aerosols has offset some recent climate warming

A recent increase in the abundance of particles high in the atmosphere has offset about a third of the current climate warming influence of CO2 change during the past decade, according to a new study led by NOAA and published in the online edition of Science.

Noaa
Sources of aerosols reach the stratosphere from above and below, as shown in the graph. Sulfur dioxide (SO 2), carbonyl sulfide (OCS), and dimethyl sulfide (DMS) are the dominant surface emissions which contribute to aerosol formation. Source: NOAA. Click to enlarge.

In the stratosphere small, airborne particles (aerosols) reflect sunlight back into space, which leads to a cooling influence at the ground. The new paper explores the recent climate effects of these aerosols; the reasons behind their increase remain the subject of ongoing research.

The new study focused on the most recent decade, when the amount of aerosol in the stratosphere has been in something of a “background” state, lacking sharp upward spikes from very large volcanic eruptions. The authors analyzed measurements from several independent sources—satellites and several types of ground instruments—and found a definitive increase in stratospheric aerosol since 2000.

Stratospheric aerosol increased surprisingly rapidly in that time, almost doubling during the decade. The increase in aerosols since 2000 implies a cooling effect of about 0.1 watts per square meter—enough to offset some of the 0.28 watts per square meter warming effect from the carbon dioxide increase during that same period.

—John Daniel, a physicist at the NOAA Earth System Research Laboratory (ESRL)

The reasons for the 10-year increase in stratospheric aerosols are not fully understood and are the subject of ongoing research, says coauthor Ryan Neely, with the University of Colorado and the Cooperative Institute for Research in Environmental Sciences (CIRES). Likely suspects are natural sources—smaller volcanic eruptions—and/or human activities, which could have emitted the sulfur-containing gases, such as sulfur dioxide, that react in the atmosphere to form reflective aerosol particles.

Daniel and colleagues with NOAA, CIRES, the University of Colorado, NASA, and the University of Paris used a climate model to explore how changes in the stratosphere’s aerosol content could affect global climate change, both in the last decade, and projected into the future. The team concluded that models miss an important cooling factor if they don’t account for the influence of stratospheric aerosol, or don’t include recent changes in stratospheric aerosol levels.

Moreover, future global temperatures will depend on stratospheric aerosol. The warming from greenhouse gases and aerosols calculated for the coming decade can vary by almost a factor of two—depending on whether aerosols continue to increase at the same rate as over the past decade, or if instead they decrease to very low levels, such as those experienced in 1960.

If stratospheric aerosol levels continue to increase, temperatures will not rise as quickly as they would otherwise, said Ellsworth Dutton, also with NOAA ESRL and a co-author on the paper. Conversely, if stratospheric aerosol levels decrease, temperatures would increase faster. Dutton and his colleagues use the term “persistently variable” to describe how the background levels of aerosol in Earth’s stratosphere can change from one decade to the next, even in the absence of major volcanic activity.

Ultimately, by incorporating the ups and downs of stratospheric aerosols, climate models will be able to give not only better estimates of future climate change, but also better explanations of past climate changes.

The “background” stratospheric aerosols are more of a player than we thought. The last decade has shown us that it doesn’t take an extremely large volcanic eruption for these aerosols to be important to climate.

—John Daniel

Authors of the paper are: Susan Solomon, University of Colorado; John Daniel, Chemical Sciences Division of NOAA’s Earth System Research Laboratory; Ryan Neely, CIRES-University of Colorado and NOAA-ESRL; J.P. Vernier, NASA-Langley Research Center and University of Paris; Ellsworth Dutton, Global Monitoring Division of NOAA-ESRL; and Larry Thomason, NASA-Langley.

Resources

  • S. Solomon, J. S. Daniel, R. R. Neely III, J. P. Vernier, E. G. Dutton, and L. W. Thomason (2011) The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change. Science doi: 10.1126/science.1206027

Comments

HarveyD

A few hundred large scale fine particles generators or a few million more diesel powered vehicles could cool it down. What would be the effect of living creatures?

sheckyvegas

See? See? Now this is something all the Climate Change naysayers can get behind.
"Nay!", they will say. "See??? Pollution is GOOD for the planet! It's getting cooler, not hotter! Nay, we say! Naaaaaayyyyyyy!!!"

...or that's how it might go...

ToppaTom

Easy there big fella.

They have only narrowed it down; "Likely suspects are natural sources and/or human activities".

That still leaves the supernatural, the unnatural, Mr. Natural and unnatural human activities (which I favor).

Reel$$

You both got it wrong. THIS is the culprit:

http://bit.ly/oUZhRp

The comments to this entry are closed.