BMW developing advanced automated driver assistance systems
Volvo introducing new downsized 4-cylinder engine range, with fuel economy improvements up to 35%; hybrid and flywheel drive systems

NREL data set shows clouds’ effects on solar power

The US Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) has produced and made available a rich data set showing what happens, second-by-second, when clouds pass over a solar power installation.

Seventeen measurement stations near Hawaii’s Honolulu International Airport on the island of Oahu collected data at 1-second intervals over the course of a year. The data set is of great interest to utilities, developers of large-scale photovoltaic (PV) systems, forecasters, system operators, laboratories and universities.

By understanding the characteristics of cloud shadows that pass across a large PV system, utility officials can devise strategies to better manage those fluctuations so the grid isn’t adversely impacted.

The DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii. The study also includes General Electric, the Hawaiian Electric Company and the Hawaiian National Energy Institute.

The information can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems.

The collected data “allow us to set up a solar-monitoring network that simulates exactly how clouds would impact a large photovoltaic system,” said NREL Senior Scientist David Renne. “The time-synch data are unique. All 17 stations make a 1-second measurement at exactly the same time. This allows the array to “see” clouds moving through and simulates how a PV system might behave.

Each of the 17 measurement stations measure the solar energy in the sun’s visible spectrum that reaches a horizontal surface at ground level, Renne said. Researchers from NREL’s Solar Radiation Research Laboratory designed the equipment so that a global positioning satellite system can be used to provide concurrent 1-second measurements for each of the 17 stations.

The data are collected every second because PV systems respond very quickly to shadows, Renne said. The data set can model utility-scale systems up to 30 megawatts.

Renne said that as solar power becomes a greater part of the energy mix, the resulting jumps in response to cloud cover can cause fluctuations in the grid, which if unmitigated can cause surges, fluctuations, and headaches for the utility operator. Storage of the electricity generated by the sun is one way to handle those fluctuations. Another is to stabilize the grid via infrastructure and software packages.

If they have good statistical information about cloud patterns, they can design systems and wire them together along certain orientations to minimize the impact of cloud passage, and dampen those fluctuations.

—David Renne

One new insight is that with very large arrays of solar panels, there is a smoothing of the fluctuation, compared to the sharp spikes and plunges that can happen when a cloud passes by a single panel or small rooftop array.

Solar power is particularly useful during hot summer days, when the demand for air conditioning is the highest. That’s also when the sun is blaring and when solar panels are producing at their peak.

The data collected for the Oahu Solar Energy Study belongs to the partners working on the HCEI, but NREL can share the knowledge about building a data set based on one-second intervals with others around the nation and the world. One year’s worth of the data can be found on NREL’s Measurement and Instrumentation Data Center (MIDC) website at



Areas with most direct sunlight and least clouds exist and are well known already. Why not use them?


One new insight is that with very large arrays of solar panels, there is a smoothing of the fluctuation,

In other words, going big solves the problem.


ai_ not everyone can go big e.g. the residential user. And all the added hardware to mitigate intermittent operation increases the cost of already costly solar systems.

Another solution is to create hybrid systems with CHP smoothing for residential and light industry. This reduces the PV portion and eliminates weather related flux.

An even better solution is to use LANR heaters for CHP appliances... but that would be rather disruptive, wouldn't it?

Dave R

In other words, going big solves the problem.
Which also means that since large installs are essentially many small installs combined, distributed small systems should also solve the problem.

Your typical residential PV system going on or off is not much different than your oven, air conditioner or water heater cycling on/off.

Nick Lyons

What Dave R said.

The more solar rooftops distributed across a region, the smoother the solar generation input to the regional grid. Large-scale solar has its place, but starts to run into land use issues as it scales up. Rooftop solar is more expensive in aggregate, but is generally environmentally benign with no land use problems.


Next they hope to discover the relationship between current, voltage and resistance.

Stay tuned.

Henry Gibson

The monies spent to promote solar power would reduce CO2 levels far more if they were spent on co-generation in all buildings that have natural gas available. ..HG..


What Henry said. CHP distributed energy IS coming - like it or not.

The comments to this entry are closed.