GM to invest $450M in Argentina
Intelligent Energy and IndianOil partnering on hydrogen fuel cell projects in India

Ames Laboratory improving process to recycle rare-earth materials

Scientists at the US Department of Energy’s (DOE) Ames Laboratory are working to more effectively remove the rare earth element (REE) neodymium from the mix of other materials in a magnet. Initial results show recycled materials maintain the properties that make rare-earth magnets useful.

The current rare earth recycling research builds on Ames Laboratory’s decades of rare-earth processing experience. In the 1990s, Ames Lab scientists developed a process that uses molten magnesium to remove rare earths from neodymium-iron-boron magnet scrap. Back then, the goal was to produce a mixture of magnesium and neodymium because the neodymium added important strength to the alloy, rather than separate out high-purity rare earths because, at the time, rare earth prices were low.

But rare earth prices increased ten-fold between 2009 and 2011 and supplies are in question. Therefore, the goal of today’s rare-earth recycling research takes the process one step farther.

Now the goal is to make new magnet alloys from recycled rare earths. And we want those new alloys to be similar to alloys made from unprocessed rare-earth materials. It appears that the processing technique works well. It effectively removes rare earths from commercial magnets.

—Ryan Ott, research leader

Ott’s research team also includes Ames Laboratory scientist Larry Jones and is funded through a work for others agreement with the Korea Institute of Industrial Technology. The research group is developing and testing the technique in Ames Lab’s Materials Preparation Center, with a suite of materials science tools supported by the DOE Office of Science.

The process starts with sintered, uncoated magnets that contain three rare earths: neodymium, praseodymium and dysprosium, said Ott. The magnets are broken up in an automated mortar and pestle until the pieces are 2-4 millimeters long. Next, the tiny magnet pieces go into a mesh screen box, which is placed in a stainless-steel crucible. Technicians then add chunks of solid magnesium. A radio frequency furnace heats the material. The magnesium begins to melt, while the magnet chunks remain solid.

All three rare earths leave the magnetic material by diffusion and enter the molten magnesium, according to Ott. The iron and boron that made up the original magnet are left behind. The molten magnesium and rare-earth mixture is cast into an ingot and cooled. Then they boil off the magnesium, leaving just the rare earth materials behind.

We’ve found that the properties of the recycled rare earths compare very favorably to ones from unprocessed materials. We’re continuing to identify the ideal processing conditions.

—Ryan Ott

The next step is optimizing the extraction process. Then the team plans to demonstrate it on a larger scale.

Comments

The comments to this entry are closed.