New South Wales launching customer trial of electronic card and ticketing system for transport
European researchers detect l-C3H+ hydrocarbon molecule in interstellar space

UCSD/Sapphire team shows marine algae can be engineered to perform as well as fresh water algae to produce enzymes and biofuels; removing the constraint of fresh water

Researchers from UC San Diego and Sapphire Energy, Inc. have demonstrated for the first time that genetically engineered marine algae can be just as capable as fresh water algae in producing industrially relevant products such as enzymes or biofuels.

The scientists engineered marine algae to produce five different kinds of industrially important enzymes; they suggest the same process could be used to enhance the yield of petroleum-like compounds from these salt water algae. Their achievement is detailed in a paper published online in the current issue of the journal Algal Research.

The ability to genetically transform marine algae into a biofuel crop is important because it expands the kinds of environments in which algae can be conceivably grown for biofuels. The UC San Diego study suggests that algal biofuels can be produced in the ocean or in the brackish water of tidelands or even on agricultural land on which crops can no longer be grown because of high salt content in the soil.

What our research shows is that we can achieve in marine species exactly what we’ve already done in fresh water species. There are about 10 million acres of land across the United States where crops can no longer be grown that could be used to produce algae for biofuels. Marine species of algae tend to tolerate a range of salt environments, but many fresh water species don’t do the reverse. They don’t tolerate any salt in the environment.

The algal community has worked on fresh water species of algae for 40 years. We know how to grow them, manipulate them genetically, express recombinant proteins—all of the things required to make biofuels viable. It was always assumed that we could do the same thing in marine species, but there was always some debate in the community as to whether that could really be done.

—Stephen Mayfield, project leader

Mayfield, a professor of biology at UC San Diego, also directs the San Diego Center for Algae Biotechnology (SD-CAB), a consortium of research institutions in the region working to make algal biofuels a viable transportation fuel in the future.

That debate over the ability to engineer successfully marine species came to a head last month when a National Academy of Sciences committee examining the future potential of algal biofuels for the US Department of Energy published a report pointing out that the production of algal biofuels might be limited by fresh water because no published research study had demonstrated the feasibility of using engineered marine species of algae. (Earlier post.)

But now we’ve done it. What this means is that you can use ocean water to grow the algae that will be used to produce biofuels. And once you can use ocean water, you are no longer limited by the constraints associated with fresh water. Ocean water is simply not a limited resource on this planet.

—Stephen Mayfield

The UC San Diego biologists focused their study on a marine species of alga, Dunaliella tertiolecta, which had been earlier targeted by scientists for potential biofuels production because of its high oil content and ability to grow rapidly under a wide range of pH and salt concentrations.

To demonstrate that it could be used in commercial biofuel production, they introduced five genes into the alga that produced five different kinds of enzymes—xylanase, α-galactosidase, phytase, phosphate anhydrolase, and β-mannanase—that could be used in an industrial setting to not only convert biomass to fuel, but also increase nutrient availability in animal feed. Some of these enzymes, for example, came from a fungus that degrades plant material into simple sugars.

We hope to eventually determine whether whole algae, post-oil extraction, may be used as a feed additive to improve animal feeds. Animal feed is a relatively high volume market that may be able to benefit from algae-produced proteins as a feed additive.

—Georgianna et al.

The UC San Diego biologists—who included D. Ryan Georgianna, Michael Hannon, Marina Marcuschi, Alex Lewis, James Hyun—collaborated on their project with three scientists from Sapphire Energy, Inc., a San Diego algal biotechnology company: Shuiqin Wu, Kyle Botsch and Michael Mendez. Their research effort was funded by the Air Force Office of Scientific Research and the State of California Energy Commission.


  • D. Ryan Georgianna, Michael J. Hannon, Marina Marcuschi, Shuiqin Wu, Kyle Botsch, Alex J. Lewis, James Hyun, Michael Mendez, Stephen P. Mayfield (2012) Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Research doi: 10.1016/j.algal.2012.10.004



I thought Algenol determined this a couple years past and have test sites in Florida.


Start growing commercial fuel. Algae fuel has been seriously researched since Carter, except for the Republican presidents.


40 years of researchs and still not a single gallon of synthetic gasoline made with green algae for sale anywhere.

Account Deleted

A D, try Solazyme, they are about to start selling it very soon in SF. Companies like Solazyme, Sapphire, and Algenol are just starting to begin small scale commercial operations. It might be 40 years but its been in short spurts and it takes a sustained investment to build the knowledge, workforce, and infrastructure needed for any new fuel source to be a part of the solution, not to mention compete with cheap fossil fuel sources.


Algae sounds like a goose that lays golden eggs.


They ought to be trying to engineer halophytes.  There's a lot of brine out there (or very saline water which can be evaporated to brine), and there are many fewer predator species which can survive in the extreme saline environment.

The comments to this entry are closed.