Geely and Detroit Electric enter strategic partnership to co-develop EVs for China
US diesel car registrations increased by 24% from 2010-2012, hybrids up 33%

MIT researchers propose subsea version of pumped hydro for renewable energy storage

Researchers at MIT are proposing using a variation on pumped hydroelectric systems for storage of electricity produced by offshore wind farms. The key to this Ocean Renewable Energy Storage (ORES) system is the placement of 30-meter-diameter hollow concrete spheres on the seafloor under the wind turbines. These structures would serve both as anchors to moor the floating turbines and as a means of storing the energy they produce.

Geologic pumped hydroelectric storage works by pumping water to a reservoir behind a dam when electricity demand is low. When demand is high, the water is released through turbines that generate electricity. (Earlier post.)

In the MIT scheme, whenever the wind turbines produce more power than is needed, that power would be diverted to drive a pump attached to the underwater structure, pumping seawater from the hollow sphere. Later, when power is needed, water would be allowed to flow back into the sphere through a turbine attached to a generator, and the resulting electricity sent back to shore.

One such 25-meter sphere in 400-meter-deep water could store up to 6 megawatt-hours of power, the MIT researchers have calculated; that means that 1,000 such spheres could supply as much power as a nuclear plant for several hours.

The 1,000 wind turbines that the spheres could anchor could, on average, replace a conventional on-shore coal or nuclear plant. This energy source could be made available within minutes, and then taken offline just as quickly.

The system would be grid-connected, so the spheres could also be used to store energy from other sources, including solar arrays on shore, or from base-load power plants, which operate most efficiently at steady levels. This could potentially reduce reliance on peak-power plants, which typically operate less efficiently.

The concept is detailed in a paper published in Proceedings of the IEEE and co-authored by Alexander Slocum, the Pappalardo Professor of Mechanical Engineering at MIT; Brian Hodder, a researcher at the MIT Energy Initiative; and three MIT alumni and a former high school student who worked on the project.

The weight of the concrete in the spheres’ 3-meter-thick walls would be sufficient to keep the structures on the seafloor even when empty, they say. The spheres could be cast on land and then towed out to sea on a specially built barge. (No existing vessel has the capacity to deploy such a large load.)

Preliminary estimates indicate that one such sphere could be built and deployed at a cost of about $12 million, Hodder says, with costs gradually coming down with experience. This could yield an estimated storage cost of about 6 cents per kilowatt-hour—a level considered viable by the utility industry. Hundreds of spheres could be deployed as part of a far-offshore installation of hundreds of floating wind turbines, the researchers say.

Such offshore floating wind turbines have been proposed by Paul Sclavounos, a professor of mechanical engineering and naval architecture at MIT, among others; this storage system would dovetail well with his concept, Hodder says.

In combination, floating turbines and undersea storage spheres could provide reliable, on-demand power, except during extended calm periods. Meanwhile, a siting many miles offshore would provide the benefit of stronger winds than most onshore sites, while also operating out of sight of the mainland.

The team calculated that the optimal depth for the spheres would be about 750 meters, though as costs are reduced over time they could become cost-effective in shallower water. The “sweet spot” occurs when the concrete wall thickness to withstand the hydrostatic pressure provides enough ballast mass—this will depend on the strength of used concrete and reinforcement.

Slocum and some of his students built a 30-inch-diameter prototype in 2011, which functioned well through charging and discharging cycles, demonstrating the feasibility of the idea. The team hopes to extend its testing to a 3-meter sphere, and then scale up to a 10-meter version to be tested in an undersea environment, if funding becomes available. MIT has filed for a patent on the system.

The researchers estimate that an offshore wind farm paired with such storage spheres would use an amount of concrete comparable to that used to build the Hoover Dam—but would also supply a comparable amount of power.

While cement production is a major source of carbon-dioxide emissions, the team calculated that the concrete for these spheres could be made, in part, using large quantities of fly ash from existing coal plants—material that would otherwise be a waste product—instead of cement. The researchers calculate that over the course of a decade of construction and deployment, the spheres could use much of the fly ash produced by US coal plants, and create enough capacity to supply one-third of US electricity needs.

The work was supported by a grant from the MIT Energy Initiative.


  • Slocum, A.H.; Fennell, G.E.; Dundar, G.; Hodder, B.G.; Meredith, J.D.C.; Sager, M.A., “Ocean Renewable Energy Storage (ORES) System: Analysis of an Undersea Energy Storage Concept,” Proceedings of the IEEE , vol. 101, no.4, pp. 906,924, doi: 10.1109/JPROC.2013.2242411



1. Ridiculously costly proposal. If there are 1000 spheres at $10,000,000 per (not to mention cost of specially-built ship, crew, chains, fuel, materials, etc.), the premise would cost $10,000,000,000.
2. Maintenance. 1000 spheres, each with pumps and valves, at a depth of over a 1000 feet? Good luck.
3. Pollution. Cement is, oh yeah, remarkably energy intensive. These are 1000 100foot spheres with 10foot think walls. The pollution caused through this solution is nuts.

Frankly, it's not even a great thought experiment.

I like the idea of renewable energy storage -- but not as much as I like true grid connectivity. Let's do the obvious first.


I was wondering if it would be possible to do something similar with abandoned oil wells? Many are 1000 meters deep or more. One would expect they could produce or recharge at several hundred gpm which could mean greater than 50 kw generating capacity per well. They probably have existing tank surface storage capacity to for hours if not days?


Here is an ocean storage system proposed for Belgium


6 MWH / $12 million = $2000/kWh.  That's not even competitive with Li-ion batteries, though the cycle life should be superior.  On the other hand, concrete is very cheap and there is vast potential for reduction in cost.

A concrete-like substance can be precipitated onto a conductive mesh from seawater by electrolysis.  If the spheres could be made out of that, it would eliminate the CO2 emissions of making Portland cement and more spheres could be made as required using the output of the wind farm itself; it might well be cheaper to boot.  All you would need is an impermeable membrane to go over the exterior to seal the inevitable pinholes.

The comments to this entry are closed.