Virgin Australia, Brisbane Airport and SkyNRG plan to investigate feasibility of bio-jet fueling at Brisbane
NYSERDA awards $1.4M to 6 projects for advanced energy storage technologies; Electromotive and Ioxus for heavy-duty hybrids

UW researchers discover major lithium resource in Wyoming; potential integrated brine production/CO2 storage system

Researchers at the University of Wyoming Carbon Management Institute (CMI) discovered a major new lithium resource near Rock Springs during a geological carbon dioxide storage site characterization project sponsored by the US Department of Energy.

Preliminary analyses of fluid samples collected from a well drilled on the Rock Springs Uplift—a geological feature in southwest Wyoming—suggest that reservoir brines from a 25-square-mile area of the uplift could contain 228,000 tons of lithium.

By comparison, the lithium reserves at Silver Peak, Nev.—the largest domestic producer of lithium—total 118,000 tons in a 20-square-mile area. In a best-case scenario, the 2,000-square-mile Rock Springs Uplift could harbor up to 18 million tons of lithium, equivalent to about 720 years of current global lithium production.

Presently, the US imports more than 80% of the lithium used domestically. The potential new lithium resource discovered by CMI could transform the US from a significant lithium importer to an independent lithium producer.

We’re excited about this discovery and the prospect of creating a completely new industry in Wyoming. More work must be done to fully assess the potential, but our research is very encouraging at this point.

—Shanna Dahl, CMI deputy director

CMI scientists discovered lithium dissolved in the highly saline fluids, or brines, contained within Wyoming’s most promising CO2 storage reservoirs (the Madison limestone and Weber/Tensleep sandstone) on the Rock Springs Uplift. Before CO2 can be safely and successfully stored, these brines must first be removed from underground geologic formations to manage pressure in the reservoirs during CO2 injection.

If the brines remained in the reservoir formations during injection of liquid CO2, the resulting pressure increase could fracture the reservoir rocks and allow CO2 and other substances to escape. Removing brines from the reservoirs makes room for injected liquid CO2 while keeping pressures at safe levels and maintaining the integrity of the confining rocks.

Due to their high salinity, brines from the CO2 storage reservoirs would have to be pumped to the surface and treated—often an expensive process. Recovering and marketing lithium from the brines would produce significant revenue to offset the cost of brine production, treatment and CO2 storage operations.

—Scott Quillinan, CMI’s senior hydrogeologist

Although other researchers have evaluated the economic potential of producing metals and salts from saline oil field brines, incorporating lithium production into the CO2 storage process is a new concept, said CMI Director Ron Surdam. Several factors make southwest Wyoming ideal for testing this process, according to Surdam:

  • Production of lithium from brines requires soda ash (sodium carbonate), and importation of soda ash to lithium production facilities often represents a large expense. However, the Rock Springs Uplift CO2 storage site is located within 20 to 30 miles of the world’s largest industrial soda ash supplies, so the costs of soda ash delivery (by rail, truck or pipeline) would be minimal.

  • Magnesium must be removed from brines before they can be used for lithium recovery, which makes the entire lithium recovery process more expensive. Fortunately, the brines from the Rock Springs Uplift reservoirs contain much less magnesium than brines at existing, currently profitable lithium mining operations.

  • Brines must be heated and pressurized before lithium can be extracted from them. However, because the Rock Springs Uplift brines lie so far underground, they are already at a higher pressure and temperature than brines at existing lithium operations. This would allow operators to essentially eliminate this step in the process, resulting in significant cost savings.

CMI scientists will continue to use a variety of tools to further evaluate the reservoirs and brines in order to fully define the potential of an integrated brine production/CO2 storage system in southwest Wyoming.



It sounds as though the stars are aligning to make this potentially the world's lowest cost producer.
The lithium is not a very large part of the total costs, but every little helps, and it is particularly useful that processing is simplified by the low magnesium content.


Over doubling domestic lithium reserves could be very important.

The comments to this entry are closed.