Williams F1 reports KERS failure in garage
Nikkei: Honda’s next-gen Fit Hybrid to overtake Toyota Aqua in fuel economy

Graphene provides efficient electronics cooling

An international group of researchers, headed by Chalmers University of Technology in Sweden, have shown that graphene has a heat dissipating effect on silicon-based electronics. A layer of graphene can reduce the working temperature in hotspots inside a processor by up to 25%, which can significantly extend the working life of computers and other electronics.

The research, undertaken in partnership with the Hong Kong University of Science and Technology, Shanghai University in China and Swedish company SHT Smart High Tech AB, has been published in the journal Carbon.

Modern electronic systems generate a great deal of heat, above all due to the constantly increasing demand for more and more functionality. It is important to be able to remove the heat generated in an efficient way to maintain the long life of the system. One rule of thumb is that a 10-degree Celsius increase in working temperature halves the working life of an electronics system.

Efficient cooling is a major challenge in many different applications, such as automotive electronics, power electronics, computers, radio base stations and in various light emitting diodes, or LED lights. In automotive electronics systems, any single device in the ignition system can pump out up to 80 W continuously and in transient stage up to 300 W (within 10 nanoseconds). LED devices can have a thermal intensity almost on a par with the sun, up to 600 W/cm2 due to their extremely small size.

Superior cooling of electronics can deliver tremendous advantages. According to a study in the USA based on data from 2006, around 50 percent of the total electricity used to run data servers goes on cooling the systems.

In the study, the researchers fabricated graphene of different layer numbers using thermal chemical vapor deposition (TCVD) for demonstration as a heat spreader in electronic packaging. They focused on reducing the temperature in the small area where the electronics work most intensively—such as inside a processor, for instance. These tiny micro-or nano-scale hotspots are found in all electronics.

The normal working temperature in the hotspots we have cooled with a graphene layer has ranged from 55 to 115 degrees Celsius. We have been able to reduce this by up to 13 degrees, which not only improves energy efficiency, it also extends the working life of the electronics.

—Chalmers Professor Johan Liu, project leader


  • Zhaoli Gao, Yong Zhang,Yifeng Fu, Matthew M.F. Yuen, Johan Liu (2013) Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots. Carbon Volume 61, Pages 342–348 doi: 10.1016/j.carbon.2013.05.014


The comments to this entry are closed.