Oerlikon Graziano to provide details on new hybrid 6-speed AMT; torque infill from electric motor
Shell floats hull for Prelude, world’s largest floating facility; 3.6M tonnes LNG per year

Northwestern-led consortium to establish new NIST-sponsored center of excellence for advanced materials

The National Institute of Standards and Technology (NIST) has selected a consortium led by Northwestern University to establish a new NIST-sponsored center of excellence for advanced materials research. The new Center for Hierarchical Materials Design (CHiMaD) will be funded in part by a $25-million award from NIST over five years.

Computer model of crack growth in a part from a helicopter rotor. Colors indicate stresses surrounding the crack (red is high and blue is low). Such computations will be a key part of CHiMaD's research. Courtesy Northwestern University. Click to enlarge.

The new center will focus on developing the next generation of computational tools, databases and experimental techniques to enable “Materials by Design,” one of the primary goals of the Obama administration’s Materials Genome Initiative (MGI).

“Materials by design” employs physical theory, advanced computer models, vast materials properties databases and complex computations to accelerate the design of a new material with specific properties for a particular application—perhaps an extremely tough, lightweight composite for auto bodies or a biocompatible cell scaffold for medicine. It stands in contrast to the traditional trial-and-error method of materials discovery.

Materials-by-design techniques have the potential to revolutionize the development of new advanced materials, which in turn have created whole industries. It’s estimated that the average time from laboratory discovery of a new material to its first commercial use can take up to 20 years. The MGI aims to halve that.

The new center’s work is expected to encompass both “hard” (inorganic) and “soft” (organic) advanced materials in fields as diverse as self-assembled biomaterials, smart materials for self-assembled circuit designs, organic photovoltaic materials, advanced ceramics and metal alloys.

CHiMaD will focus these techniques on a particularly difficult challenge, the discovery of novel “hierarchical materials.” Hierarchical materials exploit distinct structural details at various scales from the atomic on up to achieve special, enhanced properties. An example in nature of a hierarchical material is bone, a composite of mineral and protein at the molecular level assembled into microscopic fibrils that in turn are assembled into hollow fibers and on up to the highly complex material that is “bone.”

The award to the Northwestern consortium for the Center for Hierarchical Materials Design is for $5 million per year for 5 years, subject to available funds. NIST may, at its discretion, extend the award for an additional 5 years after a performance review. The Northwestern-led consortium is contributing another approximately $4.65 million to the center.

Other members of the CHiMaD consortium include the University of Chicago, the Northwestern-Argonne Institute of Science and Engineering (a partnership between Northwestern and the Department of Energy’s Argonne National Laboratory) and the Computation Institute (a partnership between the University of Chicago and Argonne.)

The consortium also plans to work closely with QuesTek Innovations, a small business spin-off of NU; ASM International, a well-known professional society of materials scientists; and Fayetteville State University.


The comments to this entry are closed.