California Energy Commission to award up to $24M for new biofuel projects
Dearman liquid air engine moving into performance mapping, in-vehicle trials; diesel hybrid potential

LLNL partnering with Calysta to convert natural gas to liquid fuels

Lawrence Livermore National Laboratory (LLNL) is collaborating with start-up company Calysta Energy on the development of its proprietary organisms and biocatalysts for the economical conversion of methane and other components of natural gas into liquid hydrocarbons. (Earlier post.)

Calysta applies its expertise in biocatalysis, synthetic biology and advanced bioengineering process design to develop bio-based processes (biological gas-to-liquids, BioGTL) that are expected to operate more cheaply and efficiently than chemical processes. Calysta is using proprietary genetic optimization algorithms to enable the efficient development of bacteria which can convert methane to a variety of alkane fuels.

With this technology, we would have a small portable reactor that would convert natural gas to a liquid fuel. The liquid is much more valuable, and transportable, than natural gas in its gaseous form. If the technology works well, it could give the United States a new option for using our large reserves of natural gas.

—Lawrence Livermore engineer Joshuah Stolaroff, who co-leads the project with chemist Sarah Baker

Enzymes have been used for years in the pharmaceutical industry, however, Stolaroff said their use in the energy sector has been limited.

Our main focus is the biological conversion of methane as a route to extracting the most value from one of our most abundant domestic energy resources. We see a unique opportunity in partnering with LLNL to develop game-changing technology to advance the underlying biology.

—Josh Silverman, chief scientific officer and founder of Calysta Energy

Silverman said Calysta is interested in the partnership because of LLNL’s technical capabilities in nanostructures, reactor technology and 3D printing of substrates in which the enzymes would lie on top.

Most chemical reactions of interest for a better clean energy economy are already routinely carried out in nature. These reactions include the conversion of sunlight to chemical energy, the transfer of carbon dioxide into and out of solution, the selective oxidation of hydrocarbons (including methane to methanol), the formation of carbon-carbon bonds (including methane to ethylene) and the formation and dissolution of silicon-oxygen bonds (including enhanced mineral weathering).

Conventional industrial approaches to mimic those natural processes require catalysts that will work in industrial conditions. Certain enzymes have been identified that carry out each of these reactions with high selectivity under mild conditions—a specialty of Calysta Energy.

This presents an opportunity for industrial biocatalysis and biomimetics to fill the gap between current technology and natural capabilities. We identified methane-to-methanol technologies as having an exciting market and environmental opportunity. Catalytic methane conversion at ambient conditions would have an application to the growing shale gas industry and associated methane emissions.

—Joshuah Stolaroff

Stolaroff said natural gas mitigation strategies are also needed for a variety of sources, including oil and gas operations, coal mines, agriculture and organic waste, with a range of concentrations and characteristics. The only catalysts available to convert natural gas to other hydrocarbons at ambient temperature and pressure or from low-concentration streams are enzymes in certain type of bacteria.

Harnessing these enzymes could greatly expand the range of methane sources that would be economic to mitigate and could have additional industrial applications.

—Joshuah Stolaroff

The project is funded by the LLNL Laboratory Directed Research and Development (LDRD) program.




Henry Gibson

All new spark ignition and diesel engined vehicles should have a computer and engine designed for dual fuel operation with LPG, CNG or LNG and only tanks and regulators need to be added. Diesel versions at least will only run with the CNG supplanting part of the diesel. ..HG..

The comments to this entry are closed.