Siemens demos long-term stability of high-temperature electrolytic cells; role in energy storage systems
Volkswagen launches the battery-electric e-Golf in Germany; “Das e-Auto”

Study concludes that NG leakage higher than reflected in inventories; transportation fuel climate benefits questioned

A review of 20 years of technical literature on natural gas (NG) emissions in the United States and Canada comprising more than 200 papers has concluded that official inventories consistently underestimate actual CH4 emissions due to leakage from the natural gas system. “Atmospheric tests covering the entire country indicate emissions around 50 percent more than EPA estimates,” said lead author Adam Brandt at Stanford University. The study, which is authored by researchers from seven universities, several national laboratories and federal government bodies and other organizations, is published in the journal Science.

Among the other high-level findings of the review are that (i) the natural gas and oil sectors are important contributors to the leakage; (ii) many independent experiments suggest that a small number of “superemitters” could be responsible for a large fraction of leakage; (iii) recent regional atmospheric studies with very high emissions rates are unlikely to be representative of typical natural gas system leakage rates; and (iv) assessments using 100-year impact indicators show system-wide leakage is unlikely to be large enough to negate climate benefits of coal-to-NG substitution.

In contrast to the “green light” for coal-to-NG substitution for power generation, the authors suggest that climate benefits from vehicle fuel substitution are uncertain (gasoline, light-duty) or improbable (diesel, heavy-duty). However, they cautioned, those conclusions may undercount the benefits of natural gas, as both EPA GHGI methods and many regionally focused top-down studies attribute CH4 emissions from co-producing NG systems to the NG sector, rather than to a mixture of oil and NG sources.

Modeling has shown climate benefits from coal to NG switching for power generation over all time periods (i.e., starting immediately) if the well-to-power-plant leakage rate is below 3.2%, while benefits are seen over a 100 year period if leakage is below 7.6%. Therefore, available evidence suggests climate benefits from NG substitution for coal in the power sector over a 100-year assessment period. Alvarez et al. found benefits from NG use in transport at leakage rates below 1.7% to 3.8% for 100 year assessment periods (gasoline and diesel substitution, respectively). Therefore, some scenarios appear to support use of NG in passenger vehicle gasoline displacement, but benefits from diesel substitution in heavy-duty trucking are less likely.

—Brandt et al., SM

While the authors conclude that there is a poor understanding of sources of excess CH4 and point to areas where improved science would reduce uncertainty, they also note that hydraulic fracturing for NG is unlikely to be a dominant contributor to total emissions.

The team examined two basic types of studies:

  • “Bottom-up” studies that measure emissions directly from devices or facilities and then compare results to emissions factors (EFs; e.g., emissions per device). Large-scale inventories are created by multiplying EFs by activity factors (e.g., number of devices).

  • Atmospheric studies that estimate emissions after atmospheric mixing occurs. These typically compare measurements to emissions inventories, such as the US Environmental Protection Agency (EPA) national GHG inventory (GHGI). Atmospheric studies use aircraft, tower, and ground sampling, as well as remote sensing. All such studies observe atmospheric concentrations and must infer fluxes by accounting for atmospheric transport.

The researchers found that across years, scales, and methods, atmospheric studies systematically find larger CH4 emissions than predicted by inventories. EFs were also found to underestimate bottom-up measured emissions. They also found that regional and multistate studies focusing on NG-producing and NG-consuming regions find larger excess CH4 emissions than national-scale studies.

F1.large
Inventories and emissions factors consistently underestimate actual measured CH4 emissions across scales. Ratios >1 indicate measured emissions are larger than expected from EFs or inventory. The main graph compares results to the EF or inventory estimate chosen by each study author.

The inset compares results to a regionally scaled common denominator, scaled to region of study and (in some cases) the sector under examination.

Multiple points for each study correspond to different device classes or different cases measured in a single study. Definitions of error bar bounds vary between studies. (US, United States; Can, Canada; SC, South Central; Petrol. and Pet., petroleum; SoCAB, South Coast Air Basin; LA, Los Angeles; DJ, Denver-Julesberg; UT, Utah; HF, hydraulic fracturing). See SM for figure construction details. A R Brandt et al. Science 2014; 343:733-735. Click to enlarge.

The authors suggest a number of causes for the consistent underpredicting of emissions inventories compared to what is observed in the atmosphere:

  1. Devices sampled are not likely to be representative of current technologies and practices. Production techniques are being applied at scale (e.g., hydraulic fracturing and horizontal drilling) that were not widely used during sampling in the early 1990s, which underlies EPA EFs.

  2. Measurements for generating EFs are expensive, which limits sample sizes and representativeness. Many EPA EFs have wide confidence intervals. There are also reasons to suspect sampling bias in EFs, as sampling has occurred at self-selected cooperating facilities.

  3. If emissions distributions have “heavy tails” (e.g., more high-emissions sources than would be expected in a normal distribution), small sample sizes are likely to underrepresent high-consequence emissions sources. Studies suggest that emissions are dominated by a small fraction of “super-emitter” sources at well sites, gas-processing plants, co-produced liquids storage tanks, transmission compressor stations, and distribution systems. For example, one study measured ~75,000 components and found that 58% of emissions came from 0.06% of possible sources.

  4. Activity and device counts used in inventories are contradictory, incomplete, and of unknown representativeness.

Improved science would aid in generating cost-effective policy responses. Given the cost of direct measurements, emissions inventories will remain useful for tracking trends, highlighting sources with large potential for reductions, and making policy decisions. However, improved inventory validation is crucial to ensure that supplied information is timely and accurate. Device-level measurements can be performed at facilities of a variety of designs, vintages, and management practices to find low-cost mitigation options. These studies must be paired with additional atmospheric science to close the gap between topdown and bottom-up studies. One such large study is under way, but more work is required.

If natural gas is to be a “bridge” to a more sustainable energy future, it is a bridge that must be traversed carefully: Diligence will be required to ensure that leakage rates are low enough to achieve sustainability goals.

—Brandt et al.

The research was funded by the nonprofit organization Novim through a grant from the Cynthia and George Mitchell Foundation. Novim was formed in late 2007 by a group of scientists and engineers associated with the Kavli Institute for Theoretical Physics at UC Santa Barbara to provide an independent, non-advocacy source of data, information and knowledge on important national and global issues in a manner that would help catalyze constructive debate and potentially lead to programs addressing these issues.

Resources

  • A. R. Brandt, G. A. Heath, E. A. Kort, F. O’Sullivan, G. Pétron, S. M. Jordaan, P. Tans, J. Wilcox, A. M. Gopstein, D. Arent, S. Wofsy, N. J. Brown, R. Bradley, G. D. Stucky, D. Eardley, and R. Harriss (2014) “Methane Leaks from North American Natural Gas Systems,” Science 343 (6172), 733-735 doi: 10.1126/science.1247045

Comments

Larzen

I really don't think we have to worry about the climate anymore.

Michael Weindl

That its cold in the US means nothing in context to climate change, my hometown in the German alps which has a long history as a ski resort has another snowless winter and 60 degrees. Climate change manmade or not costs them a lot of money.

SJC

Climate change is more heat, cold, flood, drought...you name it. The earth is a heat engine, the extra energy is being dissipated in the oceans and in the weather.

Mannstein

@ Michael Weindl

Wonder if your home town can bring some of those warm 60 degree temperatures over to the US North East. Here it feels like Stalingrad 1943 and we are all freezing our asses off.

Engineer-Poet

Mannstein, I'll take this instead of the early-spring-with-surprise-freeze that I had 2 years ago.  It played holy hell with the fruit harvest.

Arne

@Mannstein

No absolute records were broken, so stop whining. You have had colder winters.

And while we're at it, can you send some of your cold and deliver it in Australia where they suffer sort-of permanent heat waves and bush fires?

And do something about the flooding in England, please?

Maybe get some water in Brazil for the Paulistas?

The climate is changing and we're not better of from it. No denying will change reality.

ai_vin

Wonder if your home town can bring some of those warm 60 degree temperatures over to the US North East.

You don't have to go as far as the German alps to find warm weather. At the same time as the first polar vortex was hitting the US North East there were nude sunbathers spotted at Lake Tahoe, and Alaska was being hit with a heat wave.

Roger Pham

NG is only a bridge fuel until H2 will take over. The gaseous infrastructure of NG can also be used for H2 if some attention is made to make it H2-compatible. For example, the CF tank designed by Quantum Fuel System originally designed for H2 now is orderd in significant number for NG use.

Due to the high GHG index of NG, we should rapidly move toward H2, which is not a GHG.

kalendjay

So Mannstein, why is your country so committed to eliminating nuclear power and constructing a new slew of coal plants? Why doesn't your PM lobby hard and make the MSNBC news and get the US to export LNG, extract gas from the atlantic shelf and Gulf, and actually fix these leakage problems? And force down the cost of Russian gas?

Bob Wallace

Germany is building new coal plants. Germany is building replacement coal plants. As the new plants come on line older, less efficient plants will close. The end result will be that Germany will burn significantly less coal per unit of electricity produced.

The decision to replace inefficient coal plants was made prior to the decision to close nuclear. Closing nuclear plants came from a desire to remove that danger from their lives. Remember, Chernobyl happened next door. Then when one of the most technologically advanced countries melted some down Germans decided it was time to cut their risks.

ai_vin

Germany will burn significantly less coal per unit of electricity produced.

That is an important point but we must clarify the type of coal we're talking about. Although they are burning less coal (and NG) per unit of electricity produced they are also increasing the ratio of brown coal over hard coal. Brown coal produces more emissions which isn't good: It's not as bad as some would have you believe but it still isn't as good as it could be.
http://www.renewableenergyworld.com/assets/images/story/2012/10/4/7-large-german-coal-fired-generation-of-electricity-falls-while-renewable-generation-rises.jpg

I would prefer that they keep their existing nuclear power plants open but recognize that they aren't going to, so I hope they can step-up their game with RE.

The comments to this entry are closed.