Researchers develop high-speed friction stir welding technique for aluminum joining at high volume production speeds
Platinum-chromium alloy outperforms platinum as fuel cell catalyst

Researchers find injecting tiny grains of lithium improves performance of fusion plasmas

Scientists from General Atomics and the US Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), together with a team of researchers from across the United States, have found that upon injecting tiny grains of lithium into a plasma undergoing a particular kind of turbulence under the right conditions, the temperature and pressure rose dramatically. The finding may quicken the development of fusion energy.

High heat and pressure are crucial to fusion, a process in which atomic nuclei—or ions—smash together and release energy; this makes even a brief rise in pressure of great importance for the development of fusion energy.

The scientists used a device developed at PPPL to inject grains of lithium measuring some 45 millionths of a meter in diameter into a plasma in the DIII-D National Fusion Facility—or tokamak—that General Atomics operates for DOE in San Diego. When the lithium was injected while the plasma was relatively calm, the plasma remained basically unaltered. Yet as reported this month in a paper in Nuclear Fusion, when the plasma was undergoing a kind of turbulence known as a “bursty chirping mode,” the injection of lithium doubled the pressure at the outer edge of the plasma. In addition, the length of time that the plasma remained at high pressure rose by more than a factor of 10.

Conditions at the edge of the plasma have a profound effect on the superhot core of the plasma where fusion reactions take place. Increasing pressure at the edge region raises the pressure of the plasma as a whole. And the greater the plasma pressure, the more suitable conditions are for fusion reactions.

Experiments have sustained this enhanced state for up to one-third of a second. A key scientific objective will be to extend this enhanced performance for the full duration of a plasma discharge.

These findings might be a step towards creating our ultimate goal of steady-state fusion, which would last not just for milliseconds, but indefinitely.

—Tom Osborne, a physicist at General Atomics and lead author

Physicists have long known that adding lithium to a fusion plasma increases its performance. The new findings surprised researchers, however, since the small amount of lithium raised the plasma’s temperature and pressure more than had been expected.

These results “could represent the birth of a new tool for influencing or perhaps controlling tokamak edge physics,” said Dennis Mansfield, a physicist at PPPL and a coauthor of the paper who helped develop the injection device called a “lithium dropper.” Also working on the experiments were researchers from Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, the University of Wisconsin-Madison and the University of California-San Diego.

Further experiments will test whether the lithium’s interaction with the bursty chirping modes—so-called because the turbulence occurs in pulses and involves sudden changes in pitch—caused the unexpectedly strong overall effect.

This work was supported by the DOE Office of Science.


  • T.H. Osborne, G.L. Jackson, Z. Yan, R. Maingi, D.K. Mansfield, B.A. Grierson, C.P. Chrobak, A.G. McLean, S.L. Allen, D.J. Battaglia, A.R. Briesemeister, M.E. Fenstermacher, G.R. McKee, P.B. Snyder and The DIII-D Team (2015) “Enhanced H-mode pedestals with lithium injection in DIII-D” Nuclear Fusion, Volume 55, Number 6 doi: 10.1088/0029-5515/55/6/063018


The comments to this entry are closed.