DOE NNSA, national labs team with NVIDIA to develop open-source Fortran compiler technology
Kia outlines 5-year plan for more green vehicles; Optima PHEV, Niro hybrid, FCV; $10.2B investment

Study finds EV deployment in China to increase Environmental Justice challenge there

A new study by a team from the University of Tennessee, Tsinghua University and the University of Minnesota has found that the wide-scale deployment of electric vehicles in China can increase the Environmental Justice (EJ) challenge in that country.

According to their findings, published in a paper in the ACS journalEnvironmental Science & Technology, most (∼77%, range: 41–96%) emission inhalation attributable to urban EVs use—i.e., from the shifting of transportation’s air pollution from urban tailpipes to rural power plants—is distributed to predominately rural communities the incomes of which are on average lower than the cities in which the EVs are used.

Master.img-000
Credit: ACS, Ji et al. Click to enlarge.

Despite significant research on environmental and economic sustainability aspects of EVs in China, to our knowledge, no research has evaluated EJ aspects of EV’s environmental health impacts across populations. This paper targets that gap. We focus on current distributional aspects of health impacts from fossil power plant emissions attributable to urban EVs (pure plug-in battery e-cars). The primary focus of the article is EVs, but the results are generalizable and would apply broadly to other examples of urban electricity consumption. In prior research, we calculated health impacts of PM2.5 from EVs and CVs using an intake fraction (iF) health assessment framework. Here, we extend the prior work to evaluate EJ.

… Environmental justice is an ethical concept related to the distributional fairness of impacts: which groups are more exposed or less exposed to environmental risks, and are those risk-differences necessary, avoidable, or remediable. Prior research has investigated EJ aspects of electricity generation. … China is facing similar EJ challenges. … Here, we focus on EJ implications of urban EVs, using two methods: investigating disparities between income and inhalation among the exposed populations; and applying discriminant analysis on multiple population groups exposed to air pollution.

—Ji et al.

Using census data, the researchers investigated the demographic characteristics (e.g., income) of those who benefit from urban EVs (city dwellers) versus those who inhale pollution from electricity generation (predominantly, rural populations downwind of fossil power plants). They modeled PM2.5-related health impacts attributable to urban EV use for 34 major cities.

The team classified the inhalation of primary PM2.5 emissions from EVs into four groups:

  • Group A, lower-income, lower-inhalation: the county has lower income and lower inhalation than the city where the urban EV is operated.

  • Group B, lower-income, higher-inhalation: the county has lower income and higher inhalation than the city where the urban EV is operated.

  • Group C, higher-income, lower-inhalation: the county has higher income and lower inhalation than the city where the urban EV is operated.

  • Group D, higher-income, higher-inhalation: the county has higher income and higher inhalation than the city where the urban EV is operated.

Group B especially reflects a potential EJ concern.

For a separate, discriminant analysis (discriminant analysis can extract information from large quantities of socioeconomic data), they classified different counties into one of three mutually exclusive groups, which bear no direct relationship to the first four groups: “advantaged” for higher-income, lower-inhalation counties; “disadvantaged” for lower-income, higher-inhalation counties; and, “unclassified” to reflect all other counties.

Of the total increase in PM2.5-inhalation caused by a shift to EVs in China, the poorest counties (the bottom 10th percentile counties representing 7.4% of the population) will inhale 8.7% while the richest counties (the top 10th percentile counties representing 12.5% of the population) will inhale 10.5%. Thus, we estimate that the average increase in exposure burden from EVs in China would be 40% greater for the poorest counties than for the richest counties. Low-income rural communities likely will not directly benefit from urban EV use. EVs, like with other examples of increased urban electricity consumption or rural electricity production, could represent new exposures for non-urban poor counties.

The disadvantaged counties are primarily located in less development areas in China−areas that are primary agricultural. A policy implication of our research is the need to consider ways to avoid or remedy impacts to these lower-income communities; future policy relevant to EVs (and to urban electricity consumption in general) should aim to investigate and tackle this EJ challenge head on.

—Ji et al.

The researchers also observed that future improvements in cleaner power generation can have immediate impacts across the transportation sector—an effect that is impossible to achieve with a large fleet of aging conventional vehicles. Thus, the government has more regulatory and economic control over transportation emissions that could result in reductions in total pollution and greenhouse gas emissions.

As of 2014, China emerged as one of the world’s largest producers and users of renewable energy. From 2010 to 2014, the percentage of total electricity generated by non-fossil sources increased from 17% to 20% for wind and hydro power and from 1.8% to 2.4% for nuclear power. These increases in renewables and nuclear power can positively impact PM2.5-related EJ in China.

—Ji et al.

Resources

  • Shuguang Ji, Christopher R. Cherry, Wenjun Zhou, Rapinder Sawhney, Ye Wu, Siyi Cai, Shuxiao Wang, and Julian D. Marshall (2015) “Environmental Justice Aspects of Exposure to PM2.5 Emissions from Electric Vehicle Use in China” Environmental Science & Technology doi: 10.1021/acs.est.5b04927

Comments

Mike999

Wow, great carbon propaganda.

However, China has also committed to 200 Gigawatt's of Solar and Wind, and that will REDUCE carbon production in the nation.

As a matter of fact, China shouldn't export 1 single solar panel to any outside country and ramp up the cutover from carbon to clean energy. if the really want to solve the problem and get more Chinese hired.

DaveD

@mike999,
Exactly. This is something the Chinese can control.
1) They control what the growth in new power generation looks like. They don't have to wait for every idiot lobbyist from the coal industry and the oil industry to block things in "congress" because they've bribed them all. They can just declare it. One of the few advantages of their form of gov't.
2) They have huge solar capacity. They can subsidize this and build it into a powerful industry.
3) They can afford to shift some of the pollution to the country side anyway as it's totally concentrated in the large cities right now where the bulk of their population lives. It's a harsh reality, but they play the numbers regardless of human life anyway. And the numbers favor spreading that pollution a bit until they can get it under control rather than completely poisoning the 51% of their population that lives in cities today.

SJC

EVs are trading tailpipes for smokestacks. It depends on your power mix, there are states in the U.S. that get more than 50% of their electric power from coal.

The comments to this entry are closed.