Sandia FAST method for synthesizing iron-nitride magnetic material could lead to smaller, better-performing high-frequency transformers
28 March 2016
A Sandia-led team has developed a new method to make an iron-nitride magnetic material that could lead to lighter and smaller, cheaper and better-performing high-frequency transformers, needed for more flexible energy storage systems and widespread adoption of renewable energy.
Sandia manufactures iron nitride (γ’-Fe4N) powders by ball-milling iron powders in liquid nitrogen and then ammonia. The iron nitride powders are then consolidated through a low-temperature field-assisted sintering technique (FAST) that forms a solid material from loose powders through the application of heat and sometimes pressure.
The FAST manufacturing method enables the creation of transformer cores from raw starting materials in minutes, without decomposing the required iron nitrides, as could happen at the higher temperatures used in conventional sintering. Previously, the γ’ phase of iron nitride has only been synthesized in either thin-film form in high-vacuum environments or as inclusions in other materials, and never integrated into an actual device.
Sandia researcher Todd Monson of the Nanoscale Sciences Department, who led the team with Stan Atcitty of Sandia’s Energy Storage Technology & Systems Department, said using this method could make transformers up to 10 times smaller than they are currently.
FAST enables the net-shaping of parts, meaning that iron nitride powders can be sintered directly into perfectly sized parts, such as transformer cores, which don’t require any machining.
—Todd Monson
Due to its magnetic properties, iron nitride transformers can be made much more compact and lighter than traditional transformers, with better power-handling capability and greater efficiency. They will require only air cooling, another important space saver. Iron nitride also could serve as a more robust, high-performance transformer core material across the nation’s electrical grid.
Transportable energy storage and power conversion systems, which can fit inside a single semi-trailer, could make it cost effective to rapidly install solar, wind and geothermal energy systems in even the most remote locations.
So far, Monson and his colleagues have demonstrated the fabrication of iron nitride transformer cores with good physical and magnetic characteristics and now are refining their process and preparing to test the transformers in power-conversion test beds.
Advanced magnetic materials are critical for next-generation power conversion systems that use high-frequency linked converters, and can complement Sandia efforts in ultra-wide bandgap device materials for improved power electronics systems. They can withstand higher frequencies and higher temperatures, which ultimately result in high power density designs.
—Stan Atcitty
Monson, Atcitty and their team built on Sandia’s expertise in power electronics and magnetic materials in strong collaborations with University of California, Irvine, and Arizona State University researchers, who helped with materials processing and systems-level modeling.
Team members from Sandia and UC Irvine have filed a patent application for the materials synthesis process.
Same or similar technology may soon find its way into improved e-motors and transformers for HEVs, PHEVs, BEVs, FCEVs diesel-electric and e-locomotives to leave room for more batteries and/or reduce on-board weight?
Less weight on Wind tower turbines would also help?
Weight is less important for ground Hydro electrical transformers because they are moved very rarely.
Posted by: HarveyD | 28 March 2016 at 10:00 AM
I beg your pardon, but transformers are already "air cooled", as I notice from the fans mounted on the step-down transformers in my locality.
Where this would be very useful is in my personal computer, whose parts could be smaller, better configured, longer lived in the battery, and better surge protected. Better fan service and a compact liquid cooling system would be a help. Or at least I would have better confidence that some viral transient or web failure is not actually caused within my hardware.
Posted by: kalendjay | 28 March 2016 at 04:51 PM