Velocys scales up FT reactors for gas-to-liquids production
Daimler investing €500M to modernize Mercedes-Benz Hamburg plant; production of e-mobility components

VW introduces new, more efficient TSI engine generation; Miller cycle with higher compression and electric VTG turbo

Volkswagen is presenting the latest generation of the EA211 TSI evo at the 37th International Vienna Motor Symposium. The first model in this future generation of spark ignition engines is the 1.5-liter TSI. The fuel-efficient and high-torque gasoline-fueled TSI engine is set to launch in late 2016, initially with outputs of 96 kW and 110 kW.

The main technology elements of the new EA211 TSI evo result in efficiency benefits of up to 10% compared with the previous 1.4l TSI (92 kW). The improvements in fuel economy take effect across a wide range of the engine map—i.e, they do not merely apply under test bench conditions but also impact everyday driving. Among the key new/revised technologies are:

  • Miller combustion cycle with a high compression ratio of 12.5:1

  • Turbocharger with electrically actuated variable turbine geometry (VTG)

  • Common-rail injection system with up to 350 bar pressure

  • Innovative thermal management

  • Cylinder deactivation (ACT)

  • APS-coated cylinder walls (atmospheric plasma spray)

The cylinder head has been extensively re-engineered. Initiatives include optimization of the water jacket for improved heat dissipation and adaptation of the valve angle and combustion chamber for the best possible execution of the Miller combustion process. The proven concept of the exhaust manifold integrated into the cylinder head has been retained. In contrast to the EA211, the intake camshaft is adjusted using a high-speed hydraulic camshaft actuator with a central control valve. The adjustment speed of up to 300° of crank angle (CA) per second enhances the dynamics of the cylinder-fill control.

Millerization and the VTG turbo. The Miller combustion cycle uses a higher expansion ratio than compression ratio (i.e., over-expansion) obtained by either early or late closing of the intake valves (EIVC and LIVC, respectively), and results in a smaller effective compression stroke; combustion and expansion proceed normally.

One effect of the Miller cycle is to reduce pumping losses, improving the thermal efficiency of the engine. The Miller cycle can also deliver hefty torque for a given displacement. Yet another effect is that it can be used to mitigate the propensity for knock in highly boosted engines.

Last year, Audi engineers introduced their then new series-production 2.0 TFSI gasoline turbocharged direct injection engine based on the Miller Cycle. (Earlier post.)

Volkswagen said that its implementation of the Miller combustion cycle is a key innovation in the new EA211 TSI evo. The resulting improvement in thermodynamic efficiency has been systematically implemented through four main development targets:

  • Increase in the geometric compression ratio to improve efficiency in customer-relevant operation.

  • Reduction of the final compression temperature through early intake valve closing and resulting expansion cooling in the intake stroke.

  • Optimization of the charge motion in the interests of rapid flame propagation to reduce knock tendencies at high specific loads.

  • Increase in charge density through efficient exhaust gas turbocharging.

A world-first for the TSI evo is the use of an exhaust gas turbocharger with electrically actuated variable turbine geometry (VTG).

Due to early intake valve closing in the Miller combustion cycle, volumetric efficiency is lower than for an engine with standard valve timing. Under partial load, the resulting de-throttling leads to a fuel-consumption benefit for the TSI evo.

High charge pressure balances out the effect of the inherently lower effective stroke volume to create high low-end torque. At low engine speeds in particular, this places very high demands on the turbocharging system. Through adaptation of turbine flow characteristics to match the operating points, an exhaust-gas turbocharger with variable turbine geometry presents the opportunity to provide very high turbine output and thus high charge pressure from low engine speeds.

The increased accumulation effect on the VTG turbine, in combination with a reduced moment of inertia in the turbocharger, additionally results in very spontaneous response characteristics. Compared with a 1.4l TSI (92 kW), the step change in load to the maximum torque takes place some 35 per cent faster. Overall, VTG technology forms an integral part of the TSI evo combustion process.

The indirect charge-air cooling has also been modified. In contrast to the EA211, the cooler is located in the pressure pipe, downstream of the compressor outlet and before the throttle valve, meaning it, too, is cooled. The new installation position made it possible to increase the size and performance of the cooler, while maintaining a very compact overall package. It is now able to reduce the temperature of the charge air to 15 Kelvin above that of the ambient air.

Injection system. The injection system is the first application of the fourth-generation Volkswagen direct-injection system. Optimization of the overall system and its components facilitated an increase in injection pressure to 350 bar. The resulting smaller droplet size improves mixture formation, leading to benefits such as a substantial reduction in particulate emissions.

The innovation of reducing the diameter of the injector tip to 6 mm, which is beneficial for integration into the combustion chamber, improves stiffness and reduces temperatures at the injector plate.

Thermal management. The new map-controlled cooling module provides the engine with efficient thermal management. Among other things, the cooling module ensures the water in the crankcase and the engine as a whole remains stationary during the warm-up phase. The resulting rapid engine warming improves heating in the car’s interior and reduces engine friction during the warm-up process. A further benefit of the map-controlled cooling module is that the engine can be cooled in close correlation with its requirements across the entire operating range.

Cylinder deactivation. Cylinder deactivation, another subassembly from the EA211 engine assembly kit, has been improved and is entering volume production with the TSI evo. This, too, benefits engine efficiency and is an important feature when it comes to the customer experience. It closes off the intake and exhaust valves of cylinders two and three up to the mid-load range, while at the same time deactivating fuel injection.

APS-coated cylinder walls. The cylinder liners in the aluminium crankcase for the 110 kW power variant are coated using the APS process (atmospheric plasma spray). Fine-grain spray powders combined with a specifically optimized grinding process lead to the creation of tiny lubrication pockets, which ensure that the piston rings glide smoothly with low friction and little wear.

Further benefits of this solution are the increased heat dissipation compared with cast iron, the resulting improvement in antiknock properties during combustion and improved corrosion resistance in respect of poor-quality fuels on global markets. APS technology has also demonstrated particularly good wear resistance in hybrid applications, whereby the cold engine is often started under higher loads.

Other features of the TSI evo include an extensive friction package. This encompasses a map-controlled, fully variable oil pump, polymer coating of the first main crankshaft bearing and a switch to low-viscosity 0W20 oil.



I'd say VW can't get new petrol engines quickly enough.
A 1.2 or 1.0 would be nice for countries such as Ireland that don't do as much motorway driving as Germany.

Thomas Pedersen

The current 1.4 TSI was already quite popular.

Interesting news about the Miller cycle and VTG on such a small engine designated for middle range cars.

I've heard reports that the 2.0 Audi Miller cycle engine has an 'intolerable', tormented engine sound. I hope this EA211 evo doesn't suffer from the same.

I'd be much more excited to learn that VW has integrated micro-hybrid with either the engine or the gearbox.

And where is the data on (assumed) fuel economy improvement?


The article does say "efficiency benefits of up to 10% compared with the previous 1.4l TSI".  I'd call that quite respectable.

The turbo-Miller cycle essentially captures exhaust energy and uses it to replace compression work done by the crankshaft, reducing back-work and routing it to the load instead.  I've been waiting for this, as more or less the pinnacle of ICE technology.  I don't think there's anywhere else to go from here, though; it's more or less the end of the line.


This cycle is, more or less, comparable at the Atkinson cycle.

This cycle is used in the Prius since almos 10 years. Subaru and Nissan also have used it.

for more info, you can look for "miller cycle" at the Wikipedia.

Thomas Pedersen

"The article does say "efficiency benefits of up to 10% compared with the previous 1.4l TSI". I'd call that quite respectable."

Right. Somehow I managed to miss that :-/

10% is quite respectable.

Next step would be micro-hybridization, which allows further down-sizing and down-speeding, particularly for cars with manual transmission (few people enjoy driving in a gear with no torque to spare for acceleration).

A 1.0 similar 3-cyl Miller cycle ICE with 48V could be a quite adept, frugal power plant for a Passat/Mondeo size car, as has been proven by Ricardo with their Hyboost concept.

Actually, I'm waiting quite impatiently for mass-market introduction of micro-hybrids (apart from start-stop functionality). The Ricardo Hyboost was boasted as a success 4-5 years ago. And Bosch, major subsupplier to the auto industry, claims to practically have the components on their shelves.

So what's the hold-up. Only Audi is speaking of 48V, and this to drive an electric turbo to boost their 3.0 TDI to even higher power.

Hey, just noticed this article that I apparently missed when it came out:


Automakers have been talking about 48V electric systems for many years; I was reading about efforts in the early 2000's.  Being able to remove the hydraulic power steering pump and A/C compressor from the belt-driven engine accessories was a significant energy savings, especially at cruise.

Using electric supercharging in lieu of belt-driven compressors is recent, but not particularly revolutionary.  If the engine can be downsized by half and still give the same peak torque and power, it is a major savings.  But it still looks like there aren't any major opportunities remaining after this; heat-recovery engines are themselves marginal, giving maybe 15-20% more.


Renault is going to send this year a microhybrid with a little engine in his flywheel, and 48V.
It will be mounted in a 110 HP diesel engine (dci).

Will be in his MPV "Scenic", a very popular model in Europe.

At the end of this year 2016, or the first months of the 2017.

We will see significant improvements in efficiency in the next years.

The comments to this entry are closed.