New biofilm reactor accelerates algae growth
Mercedes-Benz commits to Formula E, departs DTM

German team clarifies key catalytic step in enzymatic production of hydrogen

Enzymes, called [FeFe]-hydrogenases, efficiently turn electrons and protons into hydrogen; they are thus a candidate for the biotechnological production of the potential energy source. For years, researchers had assumed that a highly unstable intermediate state had to exist in the reaction. No one was able to verify this. Until now.

Now, researchers at Ruhr-Universität Bochum and the Freie Universität Berlin have clarified the crucial catalytic step in the production of hydrogen by enzymes. Led by Prof. Thomas Happe and Dr. Martin Winkler from the Bochum-based Photobiotechnology Working Group, with Berlin-based colleagues led by Dr. Sven Stripp, the team reports on the results in an open-access paper in the journal Nature Communications.

Hydrogenases can work in two directions: they turn protons and electrons into hydrogen, and also split hydrogen into protons and electrons. These reactions take place at the active center of the hydrogenase, which is a complex structure comprising six iron and six sulfur atoms, called the H-cluster. During the catalytic process, this cluster passes through numerous intermediate states.

When molecular hydrogen (H2) is split, the hydrogen molecule initially bonds to the H-cluster. Hydrogenase researchers were convinced that H2 had to split unevenly in the first step of the reaction, Winkler exaplined. The idea was that a positively charged proton (H+) and a negatively charged hydride ion (H-) are created, which then continue to react quickly to form two protons and two electrons.

The hydride state of the active enzyme, in which the hydride ion is thus bonded to the active centre, is highly unstable – so far no one has been able to verify this.

—Martin Winkler

This is what the researchers have now achieved.

Using a trick, they augmented the H-cluster state with the hydride ion, so that it could be verified spectroscopically. When hydrogen is split, a chemical equilibrium is achieved between the reaction partners involved: protons, hydride ions and hydrogen molecules.

The concentrations of the three hydrogen states are determined by a dynamic equilibrium of catalytic H-cluster states. When the researchers added large quantities of protons and hydrogen to the mixture from outside, they tipped the balance in favor of the hydride state. The active center with the negatively charged hydride ion accumulated in a larger quantity—enough to be measurable.

The team also demonstrated the hydride intermediate state, which also occurs during hydrogen production, in further experiments with hydrogenases that had been altered in a specific manner.

We were thus able to demonstrate the catalytic principle of these hydrogenases in an experiment for the first time. This provides a crucial basis for reproducing the highly effective catalytic mechanism of the H-cluster for the industrial production of hydrogen.

—Thomas Happe

The enzymes can convert up to 10,000 hydrogen molecules per second.


  • Martin Winkler, Moritz Senger, Jifu Duan, Julian Esselborn, Florian Wittkamp, Eckhard Hofmann, Ulf-Peter Apfel, Sven Timo Stripp, Thomas Happe (2017) “Accumulating the hydride state in the catalytic cycle of [FeFe]-Hydrogenases,” Nature Communications doi: 10.1038/NCOMMS16115



Could this ever become an effective affordable way to produce H2 with energy from REs?


"..for the industrial production of hydrogen."


Wake me when they gonna install this at an hydrogen station and they are able to sell endless quantity of hydrogen fuel at 75 cent a kilo.

The comments to this entry are closed.