Argonne team develops synthetic bionano membrane to convert light to hydrogen
16 October 2017
A team led by researchers at the US Department of Energy’s Argonne National Laboratory has developed a new way to produce solar fuels by using completely synthetic bionano machinery to harvest light without the need for a living cell. The researchers’ device, reported in the journal ACS Nano as a “synthetic purple membrane,” contains tiny discs of lipids, man-made proteins and semiconducting nanoparticles that, when taken together, can transform sunlight into hydrogen fuel.
The system produces hydrogen at a turnover of about 240 μmol of H2 (μmol protein)−1 h–1 and 17.74 mmol of H2 (μmol protein)−1 h–1 under monochromatic green and white light, respectively, at ambient conditions, in water at neutral pH and room temperature, with methanol as a sacrificial electron donor.
Central to the artificial template created by the Argonne researchers is synthetically produced bacteriorhodopsin. This protein is normally found in the membranes of Halobacterium salinarum, an ancient single-celled organism that lives in extreme high-salt conditions such as Utah’s Great Salt Lake and Yellowstone National Park’s hot springs, appearing as purple plumes of water.
|
The synthetic purple membrane assembly includes nanodiscs, titanium dioxide and platinum nanoparticles. (Image by Argonne National Laboratory.) Click to enlarge. |
In bacteria, the protein uses energy from visible light to pump protons across the cell membrane, creating an electrical gradient the organism uses to generate and store chemical energy.
This synthetic system gives us the ability to reconfigure an ancient biological process for a new and useful application for energy. In a natural purple membrane, bacteria use bacteriorhodopsin to harvest energy from light. Synthetic purple membranes allow us to use the nanotechnological tools we have created to adapt this to generate energy and serve human needs.
We’re not isolating a natural system to generate energy from sunlight, but rather we are constructing a completely man-made system for designed-protein expression without the need for biological cells, and then combining them with semiconductor particles. Unlike some other modern approaches, we have been able to use environmentally friendly, cadmium-free materials to make this nanoarchitecture work efficiently under visible light.
—Elena Rozhkova, corresponding author
Previously, a cell-free protein synthesis platform was used for structural biology and manufacturing proteins for medical applications. The nanodiscs mimic the biological membrane which normally supports bacteriorhodopsin and enables its function, Rozhkova said.
To create the synthetic version of the membrane protein, the researchers used a minimum of key cell elements: the nanodiscs, synthetic DNA that encoded the protein, other biological components needed for protein manufacturing, including amino acids, and also isolated ribosome-protein manufacturing machinery. This led to the successful expression of synthetic bacteriorhodopsin across the nanodiscs.
The process of the artificial protein synthesis was visualized with great precision using high resolution scanning probe microscopy, said co-author Val Novosad, a materials scientist at Argonne.
Once prepared, the synthetic purple membranes were assembled with nanoparticles of titanium dioxide for hydrogen evolution under visible light. The results reveal the entirely man-made system used the energy from the light to produce hydrogen with similar or even higher efficiency compared to systems based on bacterial purple membrane.
When the artificial protein-modified titanium dioxide absorbs the visible light, it uses the energy of the light to generate electrons, which eventually interact with protons on the surface of a co-catalyst to form hydrogen.
—Peng Wang, a former Argonne postdoctoral appointee and co-author
The study highlights the semiconductor’s ability to harness energy from visible light as opposed to ultraviolet (UV) light, a function central to renewable energy research.
Additional authors include Angela Chang from Northwestern University, Valentyn Novosad from Argonne’s Material Science Division, Vladimir Chupin from the Moscow Institute of Physics and Technology and Richard Schaller from the Center for Nanoscale Materials and Northwestern University.
This work was performed at the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility, and supported by the US Department of Energy, Office of Science.
Resources
Peng Wang, Angela Y. Chang, Valentyn Novosad, Vladimir V. Chupin, Richard D. Schaller, and Elena A. Rozhkova (2017) “Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion” ACS Nano 11 (7), 6739-6745 doi: 10.1021/acsnano.7b01142
I wonder if any of these really cool supposedly fantastic developments make it out the lab.
I have not seen solid state LiIon make it out the lab.
Since LiIon is known to catch things on fire you would think it would be a priority and in production by now.
Posted by: D | 16 October 2017 at 08:19 AM
Anything that is only productive 20% of the time is a LONG payback.
Posted by: SJC | 16 October 2017 at 10:34 AM
When looking back where very short paybacks has led us, one can wonder if better things should not have longer paybacks?
Sooner or latter, negative effects on life will have to be factored in. Porto Rico (and VW) is a good example of short term gains.
As discoveries are mass produced, (specially in low labour cost countries or in automated plants) profits will increase and paybacks will get shorter.
Posted by: HarveyD | 16 October 2017 at 02:49 PM
HD:
Agree. BTW, I'm all in on Hydrogen if they can produce it with sun power and not burn fossil fuels.
Posted by: Lad | 16 October 2017 at 02:57 PM
Capitalism is about payback not global this nor people that.
Posted by: SJC | 16 October 2017 at 11:00 PM
But Capitalism SHOULD be about global this and people that because even when a company isn't thinking about the costs they are externalizing SOMEBODY has to pay them.
I'm all for more organizations adopting the triple bottom line framework to evaluate their performance in a broader perspective to create greater business value.
https://en.wikipedia.org/wiki/Triple_bottom_line
Posted by: ai_vin | 17 October 2017 at 06:25 AM
@Lad:
I also agree that this method could lead to the production of much lower cost clean H2 when further developed.
Light (solar energy) could become the main source of electricity and H2 for the next 5 billion years or so?
Posted by: HarveyD | 17 October 2017 at 06:27 AM
"Should" is idealism, don't hold your breath.
Posted by: SJC | 17 October 2017 at 07:47 AM
More People, States, Countries will soon realize that clean REs (with storage) can supply all the energy required for transport vehicles, HVAC, manufacturing, drones, light planes, long range magnetic cannons, ships, tanks, etc for as long as we exist.
Clean H2 will be used as an effective energy carrier.
Fossil fuels should and will be progressively phased out.
Posted by: HarveyD | 18 October 2017 at 01:43 PM