Sumitomo Electric, Univ of Toyama develop magnesium alloy for die casting with superior heat resistance
Volkswagen Group to spend >$40B over next 5 years to develop electric mobility, autonomous driving, new mobility services and digitalization

Univ of Washington team working to make poplar coppice viable cheap, high-volume biofuel feedstock

A University of Washington team is trying to make poplar an economically viable biofuel feedstock by testing the production of younger poplar trees that could be harvested more frequently—after only two or three years—instead of the usual 10- to 20-year cycle. These juvenile trees are planted closer together and cut in such a way that more branches sprout up from the stump after each harvest, using the same root systems for up to 20 years. This method is called “coppicing,” and the trees are known as poplar coppice.

The UW team is the first to try converting the entire young tree—leaves, bark and stems—into bio oil and ethanol using two separate processes. Their results, published recently in two papers—one in ACS Sustainable Chemistry & Engineering and the other in Biotechnology for Biofuels (open access)—point to a promising future for using poplar coppice for biofuel.

Our research proved that poplar coppice can be a good option to meet the cheap, high-volume criteria of biofuel feedstock. Our findings are significant for the future biofuel industry, and the ultimate goal is to make poplar coppice biofuel a step closer to the pump.

—Chang Dou, a doctoral student in the UW’s Bioresource Science and Engineering program and lead author on both papers

Poplar woodchips from older trees have been the focus of most research, mainly because wood parts contain the highest concentration of sugar, which is important for making ethanol and chemicals. Earlier studies show that poplar woodchips are a viable biofuel source, but costs still don’t pencil out, especially since trees are cut just once every 10-plus years. Additionally, other tree parts go to waste when only the trunk is used, making the process more inefficient and wasteful.

However, if poplar were planted close together like an agriculture crop, and whole trees were harvested on a much quicker cycle, it could make sense from a cost perspective and offer a short return on investment, and be more attractive for farmers.

The researchers harvested poplar trees approximately the size shown in this photo. Chang Dou/University of Washington. Click to enlarge.

Alternative fuels must make economic sense, the researchers stress, for biofuels to make a dent in the petroleum-driven market.

We have the environmental incentives to produce fuels and chemicals from renewable resources, but right now, they aren’t enough to compete with low oil prices. That’s the problem.

—Renata Bura, a UW associate professor in the School of Environmental and Forest Sciences and the senior author

Bura’s research is part of the Advanced Hardwood Biofuels Northwest project funded by the US Department of Agriculture’s National Institute of Food and Agriculture. The project, directed by UW professor Rick Gustafson, is a consortium of universities and industries led by the UW whose goal is to lay the foundation for a Pacific Northwest biofuels and bio-based industry based on poplar feedstock. For this study, trees in Jefferson, Oregon—one of the four study sites—were planted in rows close together in spring of 2012 and harvested less than two years later before the leaves had fallen.

The UW team first tested whether entire young poplar trees could be converted into sugar by a process that uses high temperature, pressure and enzymes to break down the wood materials into sugar. From there, it is possible to make ethanol, acetic acid, lactic acid and other valuable chemicals by fermenting the sugar.

After processing the trees, the researchers found that leaves are poor performers and lowered

the overall sugar output, not just because leaves are naturally low in sugar, but they also contain other chemicals that impede the sugar-releasing process. When scaled up to a commercial operation, leaves should be removed and may be used for other purposes, such as feed for animals.

They also tested whole poplar trees from the same plot in another conversion process that uses much higher heat—upwards of 500 degrees Celsius—to transform the tree materials directly to bio oil via pyrolysis. Research is underway to convert this bio-oil to a transportation fuel that resembles gasoline or diesel.

In the experiment, the researchers found that including leaves didn’t make a big difference to the quality of the resulting bio oil. When scaled up, producers could ultimately save time and money by not separating leaves from branches to achieve similar quality oil.

Future poplar production plants could leverage both methods, weighing factors like the current cost of materials or the dollar value of the products being made to determine which method makes more financial sense, Dou explained.

The young poplars used in the study have similar properties to shoots that would sprout from a stump in a true coppicing operation. Using that cutting method, it is possible to harvest trees every two years for up to 20 years without the added effort and cost of pulling up roots, preparing the soil and planting new trees that is required in usual planting regimes.

Ultimately, the researchers say that coppice poplar is likely the best balance of cost and reliability for Pacific Northwest growers to produce biofuel.

Other co-authors on the papers are Fernando Resende, a UW assistant professor of environmental and forest sciences; Devin Chandler, a UW graduate student in the Bioresource Science and Engineering program; Wilian Marcondes, a UW exchange student from the University of São Paulo-Brazil; and Jessica Djaja, a UW undergraduate student.

The research was funded by a grant from the US Department of Agriculture’s National Institute of Food and Agriculture.


  • Chang Dou, Devin S. Chandler, Fernando L. P. Resende, and Renata Bura (2017) “Fast Pyrolysis of Short Rotation Coppice Poplar: An Investigation in Thermochemical Conversion of a Realistic Feedstock for the Biorefinery” ACS Sustainable Chemistry & Engineering 5 (8), 6746-6755 doi: 10.1021/acssuschemeng.7b01000

  • Chang Dou, Wilian F. Marcondes, Jessica E. Djaja, Renata Bura and Rick Gustafson (2017) “Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice” Biotechnology for Biofuels 10:144 doi: 10.1186/s13068-017-0829-6



Just what we don't need:  turning more of nature into monocultures to feed human demands.

We need to offload our demand FROM nature.  Ecomodernism now!


Coppicing is important for windrow development and conservation against sanddrifts, and low tilth (more roots and overall tree density to conserve water and vital soil fungi). This comes at the expense of the desire to reduce tree density to provide for taller, more lumber-marketable trees. But between different tree cultures growing together at different heights, and a more rapid harvest schedule overall, I'd say we'd have healthier, more marketable harvests.

Note the coppices have higher branch density and stumps preserved over successive generations. More sites for burrowing and nesting animals, better leaf coverage of the ground. I'd say this offload from nature has benefits for nature.


You're saying that coppiced poplar monoculture is better than a conventional tree farm.  I'm saying that a natural hedgerow left to become a thicket is better than a coppiced poplar monoculture.

The comments to this entry are closed.