Toyota unveils third generation humanoid robot T-HR3
Toyota Financial Services issues first Euro-denominated Green Bond allocated specifically to the sales of low-emission vehicles; €600M

Integrated solar-driven system for electrochemical energy storage and water electrolysis for H2 production

A team from UCLA and colleagues from Tarbiat Modares University and Shahed University in Iran have devised an integrated solar-powered system for both electrochemical energy storage and water electrolysis.

They synthesized a nickel-cobalt-iron layered double hydroxide (Ni-Co-Fe LDH) on a nickel foam substrate using a fast, one-step electrodeposition approach. The Ni-Co-Fe LDH exhibited excellent electrochemical properties both as an active electrode material in supercapacitors, and as a catalyst in the oxygen evolution reaction (OER) for water splitting. A paper on their work is published in the journal Energy Storage Materials.

Employed as the positive electrode in a supercapacitor, along with activated carbon as the negative electrode in an asymmetric configuration, the ultrathin and porous Ni-Co-Fe LDH nanoplatelets delivered an ultrahigh specific energy of 57.5 Wh kg−1 with specific power of 37.9 kW kg−1 and an excellent cycle life.

As an OER electrocatalyst, Ni-Co-Fe LDH exhibited superior electrocatalytic performances with a very low overpotential of 0.207 V versus a reference hydrogen electrode (RHE) at 10.0 mA cm−2, and a small Tafel slope of 31 mV dec−1.

The team attributed the superior energy storage and catalytic OER properties of the Ni-Co-Fe LDH nanoplatelet array to both the synergistic effects among the metal species and the unique mesoporous structure of the LDH that provides facilitated charge/ion diffusion pathways and more available active sites.

Traditional hydrogen fuel cells and supercapacitors have two electrodes: one positive and one negative. The device developed at UCLA has a third electrode that acts as both a supercapacitor, which stores energy, and as a device for splitting water into hydrogen and oxygen. All three electrodes connect to a single solar cell that serves as the device’s power source, and the electrical energy harvested by the solar cell can be stored in one of two ways: electrochemically in the supercapacitor or chemically as hydrogen.

People need fuel to run their vehicles and electricity to run their devices. Now you can make both electricity and fuel with a single device.

—Richard Kaner, senior author and a UCLA distinguished professor of chemistry and biochemistry, and of materials science and engineering

Combining a supercapacitor and the water-splitting technology into a single unit, Kaner said, is an advance similar to the first time a phone, web browser and camera were combined on a smartphone. The new technology may eventually lead to new applications that even the researchers haven’t considered yet, Kaner said.

The researchers designed the electrodes at the nanoscale to ensure the greatest surface area would be exposed to water, which increases the amount of hydrogen the device can produce and also stores more charge in the supercapacitor. Although the device the researchers made would fit in the palm of your hand, Kaner said it would be possible to make larger versions because the components are inexpensive.

Resources

  • Yasin Shabangoli, Mohammad S. Rahmanifar, Maher F. El-Kady, Abolhassan Noori, Mir F. Mousavi, Richard B. Kaner (2017) “An integrated electrochemical device based on earth-abundant metals for both energy storage and conversion,” Energy Storage Materials doi: 10.1016/j.ensm.2017.09.010

Comments

Arnold


Often, when looking for a way to get around an imbroglio, I will resort to schoolboy humour. In this regard I figured they could swap the seat belt for an earth strap and faraday cage but keep the asbestos fire suit.
But on the serious technical side and I agree with your observation skin penetration or folding would be explosive. It may be possible to design a short circuit protection and isolation solution.

If we looked at how this material may work.
I can Imagine flat panels, to ease manufacturing dimensional accuracy, of alternate layers of C fiber and resin to give a stacked capacitor.
These stacks then wired together to create the storage.

Technically this would deliver on the claim of a c.f. body.But realistically the major near term project outcome would be to explore the potential for c.f. 'e storage.

HarveyD

Top Greenies would add a couple of very thin layers (flexible built-in transparent solar cells) to capture as much solar energy as possible, when driving during daylight hours, to further insulate the cabin and reduce energy consumption used for HVAC.

The comments to this entry are closed.