IMO sub-committee moving forward on prohibiting carriage of high-sulfur fuel oil
DiDi partners with SoftBank in Japan for platform services for taxi industry, launches open new energy car-sharing platform

Researchers discover new efficient lithium collection method using MOF membranes; Li from produced water

Researchers at the University of Texas at Austin, Monash University (Australia) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia have recently discovered a new, efficient way to extract lithium and other metals and minerals from water. They published their findings in an open-access paper in Science Advances.

The team’s technique uses metal-organic-framework (MOF) membranes that mimic the filtering function, or “ion selectivity,” of biological cell membranes. The membrane process easily and efficiently separates metal ions, opening the door to new advanced technologies in the water and mining industries and potential economic growth opportunities in Texas.

We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes.

—Zhang et al.

The Barnett and Eagle Ford shale formations in Texas contain high amounts lithium, and the produced wastewater generated by hydraulic fracturing in those areas has high concentrations of lithium. Instead of discarding the produced water, the team’s membrane filter could extract the resulting lithium and put it to use in other industries.

Produced water from shale gas fields in Texas is rich in lithium. Advanced separation materials concepts such as ours could potentially turn this waste stream into a resource recovery opportunity.

—Benny Freeman, UT Austin

Each well in the Barnett and Eagle Ford can generate up to 300,000 gallons of produced water per week. Using their new process, Freeman and his team conservatively estimate that from just one week’s worth of produced water, enough lithium can be recovered to power 200 electric cars or 1.6 million smartphones.

In addition, the team’s process could help with water desalination. Unlike the existing reverse-osmosis membranes responsible for more than half of the world’s current water desalination capacity, the new membrane process dehydrates ions as they pass through the membrane channels and removes only select ions, rather than indiscriminately removing all ions. The result is a process that costs less and consumes less energy than conventional methods.

The team’s material operates on principles inspired by highly effective biological cell membranes, whose mechanism of operation was discovered by Roderick MacKinnon and Peter Agre and was the subject of the 2003 Nobel Prize in chemistry.

The prospect of using metal-organic frameworks for sustainable water filtration is incredibly exciting from a public-good perspective, while delivering a better way of extracting lithium ions to meet global demand could create new industries.

—Anita Hill, CSIRO’s chief scientist

Funding for this research was provided by the Australian Research Council, the Australian-American Fulbright Commission, the Commonwealth Scientific and Industrial Research Organization and the National Computational Infrastructure in Australia.


  • Huacheng Zhang, Jue Hou, Yaoxin Hu, Peiyao Wang, Ranwen Ou, Lei Jiang, Jefferson Zhe Liu, Benny D. Freeman, Anita J. Hill and Huanting Wang (2018) “Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores” Science Advances Vol. 4, no. 2, doi: 10.1126/sciadv.aaq0066



Very interesting indeed. One weeks worth of water from fracking gives enough lithium for 200 EVs. Given that 1 barrel/day of crude oil supports about 7.5 cars and assuming the well supplies 1000 barrels/day this implies the well supports 7500 cars. So over the course of a year the well supplies enough lithium to make 10,000 EV's, more than replacing the gasoline cars that need the oil. So fracking could turnout to be a very sustainable form of mining!


"Produced water"...there is a euphemism for polluted water.


Lithium from oil wells, rare earths from coal ash—when will all this abundance end and we can get back to scarcity pricing?!

I think the real kick is going to come when operators start using on-site Allam cycle powerplants to export the unmarketable natural gas over electric lines, and use the CO2 for fracking and tertiary oil recovery.

The comments to this entry are closed.