Lithium Werks signs framework agreement for construction of $1.85B battery gigafactory in China
MAN plant in Starachowice gears up for electric bus production

Brown researchers develop new durable catalyst for key fuel cell reaction; hard-magnet L10-CoPt nanoparticles

One factor holding back the widespread use of eco-friendly hydrogen fuel cells in cars, trucks and other vehicles is the cost of the platinum catalysts that make the cells work. One approach to using less precious platinum is to combine it with other cheaper metals, but those alloy catalysts tend to degrade quickly in fuel cell conditions.

Now, researchers from Brown University have developed a new alloy catalyst that both reduces platinum use and holds up well in fuel cell testing. The catalyst, made from alloying platinum with cobalt in nanoparticles, was shown to beat US Department of Energy (DOE) targets for the year 2020 in both reactivity and durability, according to tests described in the journal Joule.

Stabilizing transition metals (M) in MPt alloy under acidic conditions is challenging, yet crucial to boost Pt catalysis toward oxygen reduction reaction (ORR). We synthesized ∼9 nm hard-magnet core/shell L1 0-CoPt/Pt nanoparticles with 2–3 atomic layers of strained Pt shell for ORR.

At 60°C in acid, the hard-magnet L1 0-CoPt better stabilizes Co (5% loss after 24 hr) than soft-magnet A1-CoPt (34% loss in 7 hr). L1 0-CoPt/Pt achieves mass activities (MA) of 0.56 A/mg Pt initially and 0.45 A/mg Pt after 30,000 voltage cycles in the membrane electrode assembly at 80°C, exceeding the DOE 2020 targets on Pt activity and durability (0.44 A/mg Pt in MA and <40% loss in MA after 30,000 cycles). Density functional theory calculations suggest that the ligand effect of Co and the biaxial strain (−4.50%/−4.25%) of the Pt shell weaken the binding of oxygenated species, leading to enhanced ORR performance in fuel cells.

—Li et al.


A new catalyst developed at Brown combines an outer shell of platinum atoms (grey spheres in the rendering on the right) with ordered layers of platinum and cobalt atoms (blue spheres) in its core. The ordered layers help to tighten the shell and protect the cobalt, which makes that catalyst more reactive and durable. Sun lab / Brown University

The durability of alloy catalysts is a big issue in the field. It’s been shown that alloys perform better than pure platinum initially, but in the conditions, inside a fuel cell the non-precious metal part of the catalyst gets oxidized and leached away very quickly.

—Junrui Li, lead author

To address this leaching problem, Li and his colleagues developed alloy nanoparticles with a specialized structure. The particles have a pure platinum outer shell surrounding a core made from alternating layers of platinum and cobalt atoms. That layered core structure is key to the catalyst’s reactivity and durability, says Shouheng Sun, professor of chemistry at Brown and senior author of the research.

The layered arrangement of atoms in the core helps to smooth and tighten platinum lattice in the outer shell. That increases the reactivity of the platinum and at the same time protects the cobalt atoms from being eaten away during a reaction. That’s why these particles perform so much better than alloy particles with random arrangements of metal atoms.

—Shouheng Sun

The details of how the ordered structure enhances the catalyst’s activity are elucidated in a separate computer modeling paper published in the Journal of Chemical Physics. The modeling work was led by Andrew Peterson, an associate professor in Brown’s School of Engineering, who was also a coauthor on the Joule paper.

For the experimental work, the researchers tested the ability of the catalyst to perform the oxygen reduction reaction, which is critical to the fuel cell performance and durability. On one side of a proton exchange membrane (PEM) fuel cell, electrons stripped away from hydrogen fuel create a current that drives an electric motor. On the other side of the cell, oxygen atoms take up those electrons to complete the circuit. That’s done through the oxygen reduction reaction.

Initial testing showed that the catalyst performed well in the laboratory setting, outperforming a more traditional platinum alloy catalyst. The new catalyst maintained its activity after 30,000 voltage cycles, whereas the performance of the traditional catalyst dropped off significantly.

But while lab tests are important for assessing the properties of a catalyst, the researchers say, they don’t necessarily show how well the catalyst will perform in an actual fuel cell. The fuel cell environment is much hotter and differs in acidity compared to laboratory testing environments, which can accelerate catalyst degradation. To find out how well the catalyst would hold up in that environment, the researchers sent the catalyst to the Los Alamos National Lab for testing in an actual fuel cell.

The testing showed that the catalyst beats targets set by the Department of Energy (DOE) for both initial activity and longer-term durability. DOE has challenged researchers to develop catalyst with an initial activity of 0.44 amps per milligram of platinum by 2020, and an activity of at least 0.26 amps per milligram after 30,000 voltage cycles (roughly equivalent to five years of use in a fuel cell vehicle). Testing of the new catalyst showed that it had an initial activity of 0.56 amps per milligram and an activity after 30,000 cycles of 0.45 amps.

Even after 30,000 cycles, our catalyst still exceeded the DOE target for initial activity. That kind of performance in a real-world fuel cell environment is really promising.

—Shouheng Sun

The researchers have applied for a provisional patent on the catalyst, and they hope to continue to develop and refine it.

The work was supported by the DOE’s Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office.


  • Junrui Li, Shubham Sharma, Xiaoming Liu, Yung-Tin Pan, Jacob S. Spendelow, Miaofang Chi, Yukai Jia, Peng Zhang, David A. Cullen, Zheng Xi, Honghong Lin, Zhouyang Yin, Bo Shen, Michelle Muzzio, Chao Yu, Yu Seung Kim, Andrew A. Peterson, Karren L. More, Huiyuan Zhu, Shouheng Sun (2018) “Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis” Joule doi: 10.1016/j.joule.2018.09.016



Cobalt is more expensive than platinum. Perhaps they can justify the increased expense via increased durability or efficiency.


Cobalt price today:  $28.35/lb

Platinum price today:  $838.10/troy ounce

Stop being that guy.


HTPEMs don't need platinum on the cathode.


You were the original that guy here, SJC.  Have you learned nothing?


We have learned you are an jerk.


I was going to say an ahole.
You got banned from Cleantechnica,
you should be banned from here.


Says the guy who posts barely-rephrased statements from the article and thinks himself a worthwhile contributor.  Self-awareness fail.


Ok. My bad. Does anyone recall the announcements from 2015-2017 Re: production ready advancements which promised to reduce the amount of platinum down to 30 gm and then 15 gm? If any of that panned out the we would be down to a few hundred dollars of platinum per vehicle. Every little bit helps but knocking a couple dollars per kW off the price is not going to move the needle. On top of that this one doesn’t sound like it close to leaving the lab.

The comments to this entry are closed.