Report finds says “negative emissions technologies” need to play a large role in mitigating climate change
29 October 2018
To achieve goals for climate and economic growth, “negative emissions technologies” (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change, according to a new report from the National Academies of Sciences, Engineering, and Medicine. The report—“Negative Emissions Technologies and Reliable Sequestration”—calls for the launch of a substantial research initiative to advance these technologies as soon as possible.
Although climate mitigation remains the motivation for global investments in NETs, the committee that carried out the study and wrote the report determined that advances in NETs also could have economic rewards, as intellectual property rights and economic benefits will likely accrue to the nations that develop the best technology.
Negative emissions technologies are essential to offset carbon dioxide emissions that would be difficult to eliminate and should be viewed as a component of the climate change mitigation portfolio. Most climate mitigation efforts are intended to decrease the rate at which people add carbon from fossil fuel reservoirs to the atmosphere. We focused on the reverse—technologies that take carbon out of the air and put it back into ecosystems and the land. We determined that a substantial research initiative should be launched to advance these promising technologies as soon as possible.
—Stephen Pacala, the Frederick D. Petrie Professor in Ecology and Evolutionary Biology at Princeton University and chair of the committee
Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks.
Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. For example, combustion of a gallon of gasoline releases approximately 10 kilograms (kg) of carbon dioxide in the atmosphere. Capturing 10 kg of carbon dioxide from the atmosphere and permanently sequestering it using a NET has the same effect on atmospheric carbon dioxide as any mitigation method that simultaneously prevents a gallon of gasoline combustion.
The committee concluded that the NETs available today could be safely scaled up to capture and store a significant fraction of the total emissions both in the US and globally, but not enough to keep total global warming below two degrees Celsius, the target of the Paris agreement.
Therefore, a concerted research effort is needed to address the constraints that currently limit deployment of NETs, such as high costs, land and environmental constraints, and energy requirements.
Four land-based negative emissions technologies are ready for large-scale deployment at costs competitive with emissions mitigation strategies, the report says. These technologies include reforestation, changes in forest management, and changes in agricultural practices that enhance soil carbon storage. The fourth NET ready for scale up is “bioenergy with carbon capture and sequestration”—in which plants or plant-based materials are used to produce electricity, liquid fuels, and/or heat, and any carbon dioxide that is produced is captured and sequestered.
However, these four NETs cannot yet provide enough carbon removal at reasonable cost without substantial unintended harm, the report says. Repurposing a significant amount of current agricultural land for growing new forests or feedstocks for bioenergy with carbon capture and sequestration could have significant effects on food availability. Repurposing tropical forest would harm biodiversity. Research could identify ways to soften the land constraint, for instance, by developing crop plants that take up and sequester carbon more efficiently in soils, or by reducing food waste or demand for meat.
Two other negative emissions technologies could be revolutionary, the committee said, because they have high potential capacity to remove carbon. Direct air capture employs chemical processes to capture carbon dioxide from the air, concentrate it, and inject it into a storage reservoir. However, it is currently limited by high cost. There is no commercial driving force for developing direct air capture technologies; therefore, developing a low-cost option will require sustained government investment.
Carbon mineralization—which essentially accelerates “weathering” so carbon dioxide from the atmosphere forms a chemical bond with reactive minerals—is currently limited by lack of fundamental understanding.
The committee also examined coastal blue carbon, which involves changing land use and management practices to increase carbon stored in living plants or sediments in coastal ecosystems such as tidal marshlands. Although it has a relatively low potential capacity for removing carbon, the committee concluded that coastal blue carbon warrants continued exploration and support. The cost of the carbon removal is low or zero, because investments in many coastal blue carbon projects target other benefits such as coastal adaptation. An increase in understanding of how sea-level rise, coastal management, and other climate impacts could affect future carbon uptake rates is needed.
The committee found that NETs have not yet received adequate public investment despite expectations that they might provide approximately 30% of the net emissions reductions this century. A substantial research investment is needed as soon as practicable, the committee said, to improve existing land-based NETs, make rapid progress on direct air capture and carbon mineralization, and advance NET-enabling research on biofuels and carbon dioxide sequestration.
The report presents multiple reasons to pursue research on NETs. First, states, local governments, corporations, and countries around the world now make substantial investments to reduce their net carbon emissions and plan to increase these expenditures. Some of these efforts already include negative emissions technologies. This means that advances in NETs will benefit the US economy if the intellectual property is held by US companies.
Second, as climate damages mount, the US will inevitably take increased action to limit climate change in the future.
Third, the US is already making a substantial effort, including the new 45Q rule that provides a tax credit for capture and storage, which would leverage the value of new investments in NET research.
The study was sponsored by the US Department of Energy, National Oceanic and Atmospheric Administration, Environmental Protection Agency, United States Geological Survey, V. Kann Rasmussen Foundation, Linden Trust for Conservation, and Incite Labs, with support from the National Academy of Sciences’ Arthur L. Day Fund.
The National Academies of Sciences, Engineering, and Medicine are private, nonprofit institutions that provide independent, objective analysis and advice to the nation to solve complex problems and inform public policy decisions related to science, technology, and medicine. The National Academies operate under an 1863 congressional charter to the National Academy of Sciences, signed by President Lincoln.
None of these efforts seem to include the conversion of biomass such as crop, forestry and yard wastes into stable char which can be stockpiled or incorporated into fertilizer. That could do up to half a billion tons per year in the USA alone, though making the effort energy-positive probably restricts the char production to a fraction of that.
Posted by: Engineer-Poet | 29 October 2018 at 07:02 PM