Argonne and University of Illinois to form Midwest Hydrogen and Fuel Cell Coalition
Porsche introduces entry-level electric Taycan 4S; two battery sizes

Argonne team develops new electrolyte mixtures that stabilize silicon anodes during cycling; MESA

Researchers at the US Department of Energy’s (DOE) Argonne National Laboratory have developed a new electrolyte mixture and a simple additive that stabilizes silicon anodes during cycling. An open-access paper on their work is published in ACS Applied Materials & Interfaces.

Based on these test results, we have every reason to believe that, if silicon anodes ever replace graphite or constitute the anode in more than a few percent concentration, this invention will be part of it and could have far reaching impact.

—Baris Key, Argonne chemist

For decades, scientists have been hunting for new electrode materials and electrolytes that can produce a new generation of lithium-ion batteries offering much greater energy storage while lasting longer, costing less and being safer. This new generation will likely make electric vehicles more widespread and accelerate the electric grid’s expansion into renewable energy through cheaper and more reliable energy storage.

For scientists developing advanced lithium-ion batteries, the silicon anode has been the preeminent candidate to replace the current graphite anode. Silicon has a significant theoretical energy storage capacity advantage over graphite, being able to store almost ten times the lithium as does graphite. Increasing silicon’s attractiveness commercially is its low cost. It is the second most abundant material in the Earth’s crust, and its prevalence in computing and telecommunications hardware means there exist substantial processing technologies.

However, noted Jack Vaughey, a senior chemist in Argonne’s Chemical Sciences and Engineering (CSE) division, on cycling, a silicon-based anode in a lithium-ion cell becomes very reactive with the electrolyte, and this process degrades the cell over time, causing a shortened cycle life.

Lithium-ion battery electrolytes currently contain a solvent mixture with a dissolved lithium salt and at least one, and often more than three, organic additives.

Argonne scientists developed a unique electrolyte additive strategy—a small amount of a second salt containing any one of several doubly or triply charged metal cations (Mg2+, Ca2+, Zn2+, or Al3+). These enhanced electrolyte mixtures, collectively named ​“MESA” (which stands for mixed-salt electrolytes for silicon anodes), give silicon anodes increased surface and bulk stabilities, improving long-term cycling and calendar life.


Han et al. ACS Appl. Mater. Interfaces

The Argonne researchers also investigated how the MESA-containing electrolytes work. During charging, the metal cation additions in electrolyte solution migrate into the silicon-based anode along with the lithium ions to form lithium-metal-silicon phases, which are more stable than lithium-silicon.

This new cell chemistry greatly reduces the detrimental side reactions between the silicon anode and electrolyte that had plagued cells with the traditional electrolyte.

Of the four metal salts tested in cells, the added electrolyte salts with either magnesium (Mg2+) or calcium (Ca2+) cations proved to work the best over hundreds of charge–discharge cycles. The energy densities obtained with these cells surpassed those for comparable cells having graphite chemistry by up to 50%.

The research was funded by the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office.

In performing some of this research, the scientists utilized two US Department of Energy (DOE) Office of Science User Facilities located at Argonne: the Advanced Photon Source (APS) and the Center for Nanoscale Materials (CNM). They conducted high-energy X-ray diffraction measurements at beamline 11-BM of the APS, and scanning electron microscopy and transmission electron microscopy at the CNM.


  • Binghong Han, Chen Liao, Fulya Dogan, Stephen E. Trask, Saul H. Lapidus, John T. Vaughey, and Baris Key (2019) “Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li–M–Si Ternaries (M = Mg, Zn, Al, Ca)” ACS Applied Materials & Interfaces 11 (33), 29780-29790 doi: 10.1021/acsami.9b07270



Let's hope this chemistry works well in the sub-freezing temperature range so we can have it all.


I don't see percent of capacity over how many cycles.

The comments to this entry are closed.