Student Transportation of America receives $20,000 for deployment of propane-fueled school buses
S Dakota, Minnesota governors ask Trump to direct EPA to reduce toxic aromatics in gasoline

Rice scientists develop inorganic process for small-scale production of ammonia on demand under ambient conditions

Rice University researchers have developed an inorganic method to synthesize ammonia that is both environmentally friendly and can produce the valuable chemical on demand under ambient conditions. The research is described in the Journal of the American Chemical Society.

The Brown School of Engineering lab of materials scientist Jun Lou manipulated a two-dimensional crystal it understands well—molybdenum disulfide—and turned it into a catalyst by removing atoms of sulfur from the lattice-like structure and replacing the exposed molybdenum with cobalt.

The addition of cobalt atoms to fill vacancies in 2D molybdenum disulfide crystals enhances the material’s ability to catalyze ammonia from dinitrogen. This allowed the material to mimic the natural organic process bacteria use to turn atmospheric dinitrogen into ammonia in organisms, including in humans, who use ammonia to help liver function.

The inorganic process will allow ammonia to be produced anywhere it’s needed as a small-scale adjunct to industry, which produces millions of tons of the chemical each year through the inorganic Haber-Bosch process.

The Haber-Bosch process produces a lot of carbon dioxide and consumes a lot of energy. But our process uses electricity to trigger the catalyst. We can get that from solar or wind.

—co-lead author and Rice graduate student Xiaoyin Tian

The researchers already knew that molybdenum disulfide had an affinity to bond with dinitrogen, a naturally occurring molecule of two strongly bonded nitrogen atoms that forms about 78% of Earth’s atmosphere.

Computational simulations by Mingjie Liu, a research associate at Brookhaven National Laboratory, showed replacing some exposed molybdenum atoms with cobalt would enhance the compound’s ability to facilitate dinitrogen’s reduction to ammonia.

Lab tests at Rice showed this was so. The researchers assembled samples of the nanoscale material by growing defective molybdenum disulfide crystals on carbon cloth and adding cobalt. (The crystals are technically 2D but appear as a plane of molybdenum atoms with layers of sulfur above and below.) With current applied, the compound yielded more than 10 grams of ammonia per hour using 1 kilogram of catalyst.

The scale is not comparable to well-developed industrials processes, but it can be an alternative in specific cases. It will allow the production of ammonia where there is no industrial plant, and even in space applications.

—co-lead author Jing Zhang, a postdoctoral researcher at Rice

Zhang said lab experiments used dedicated feeds of dinitrogen, but the platform can as easily pull it from the air.

Lou said other dopants may allow the material to catalyze other chemicals, a topic for future studies.

The Welch Foundation and the US Department of Energy Office of Science supported the research.


  • Jing Zhang, Xiaoyin Tian, Mingjie Liu, Hua Guo, Jiadong Zhou, Qiyi Fang, Zheng Liu, Qin Wu, and Jun Lou (2019) “Cobalt-Modulated Molybdenum–Dinitrogen Interaction in MoS2 for Catalyzing Ammonia Synthesis” Journal of the American Chemical Society doi: 10.1021/jacs.9b02501


The comments to this entry are closed.