UChicago scientists predict new state of matter; efficient movement of electricity and energy
08 March 2020
Three scientists from the University of Chicago predict that there may be a way to make a material that could conduct both electricity and energy with 100% efficiency—never losing any to heat or friction. Their work, published in Physical Review B, suggests a framework for an entirely new type of matter, which could have very useful technological applications in the real world. Though the prediction is based on theory, efforts are underway to test it experimentally.
We started out trying to answer a really basic question, to see if it was even possible—we thought these two properties might be incompatible in one material. But to our surprise, we found the two states actually become entangled at a quantum level, and so reinforce each other.
—\co-author and research adviser David Mazziotti, a professor of chemistry and the James Franck Institute and an expert in molecular electronic structure
Since an untold amount of energy is lost off power lines, engines and machinery every year, scientists are eager to find more efficient alternatives.
In many ways, this is the most important question of the 21st century—how to generate and move energy with minimal loss.
—David Mazziotti
Superconductors—a kind of material that can conduct electricity forever with nearly zero loss—have been known about for more than a century. However, it has only been in the last few years that scientists managed to make a similar material in the laboratory which can conduct energy with nearly zero loss, called an exciton condensate.
But both superconductors and exciton condensates are tricky materials to make and to keep functioning, partly because scientists don’t fully understand how they work and the theory behind them is incomplete. What is known, however, is that both involve the action of quantum physics.
UChicago graduate student LeeAnn Sager began to wonder how the two states could be generated in the same material. Mazziotti’s group specializes in exploring the properties and structures of materials and chemicals using computation, so she began plugging different combinations into a computer model.
We scanned through many possibilities, and then to our surprise, found a region where both states could exist together.
—LeeAnn Sager
It appears that in the right configuration, the two states actually become entangled—a quantum phenomenon in which systems become intangibly linked together. This challenges the conventional notion that the two states are unrelated, and may open a new field of dual exciton and fermion pair condensates.
Using advanced mathematics, they showed that due to the quantum entanglement, the dual condensates should theoretically exist even at the macroscopic size—that is, visible to the human eye.
This implies that such condensates may be realizable in novel materials, such as a double layer of superconductors, Sager said.
The scientists are working with experimental groups to see if the prediction can be achieved in real materials.
Being able to combine superconductivity and exciton condensates would be amazing for lots of applications: electronics, spintronics, quantum computing. Though this is a first step, it looks extremely promising.
—Shiva Safaei, a postdoctoral researcher and co-author
Resources
LeeAnn M. Sager, Shiva Safaei, and David A. Mazziotti (2020) “Potential coexistence of exciton and fermion-pair condensations.” Phys Rev B doi: 10.1103/PhysRevB.101.081107
This would an electric future drastically more efficient. The distributed renewable resources delivered without loss add a huge advantage when locating where the resources are and delivering to where the demand is.
Posted by: Paroway | 08 March 2020 at 08:12 PM
This would enable ...
Posted by: yoatmon | 09 March 2020 at 03:59 AM