Study: traffic density, wind and air stratification influence concentrations of NO2
Evonik develops novel anion exchange membrane for electrolytic production of hydrogen; CHANNEL project

Researchers combine AI and radar to allow vehicles to spot hazards around corners

Using radar commonly deployed to track speeders and fastballs, researchers have developed an automated system that will allow cars to peer around corners and spot oncoming traffic and pedestrians.


Researchers combined artificial intelligence and radar used to track speeders to develop a system that will allow vehicles to spot hazards hidden around corners. Image courtesy of the researchers. Credit: Princeton University

The system, easily integrated into today’s vehicles, uses Doppler radar to bounce radio waves off surfaces such as buildings and parked automobiles. The radar signal hits the surface at an angle, so its reflection rebounds off like a cue ball hitting the wall of a pool table. The signal goes on to strike objects hidden around the corner. Some of the radar signal bounces back to detectors mounted on the car, allowing the system to see objects around the corner and tell whether they are moving or stationary.

This will enable cars to see occluded objects that today’s lidar and camera sensors cannot record, for example, allowing a self-driving vehicle to see around a dangerous intersection. The radar sensors are also relatively low-cost, especially compared to lidar sensors, and scale to mass production.

—Felix Heide, an assistant professor of computer science at Princeton University

In a paper presented 16 June at the Conference on Computer Vision and Pattern Recognition (CVPR), the researchers described how the system is able to distinguish objects including cars, bicyclists and pedestrians and gauge their direction and oncoming speed.

The proposed approach allows for collision warning for pedestrians and cyclists in real-world autonomous driving scenarios, before seeing them with existing direct line-of-sight sensors.

In recent years, engineers have developed a variety of sensor systems that allow cars to detect other objects on the road. Many of them rely on lidar or cameras using visible or near-infrared light, and such sensors preventing collisions are now common on modern cars. But optical sensing is difficult to use to spot items out of the car’s line of sight. In earlier research, Heide’s team has used light to see objects hidden around corners. But those efforts currently are not practical for use in cars both because they require high-powered lasers and are restricted to short ranges.

In conducting that earlier research, Heide and his colleagues wondered whether it would be possible to create a system to detect hazards out of the car’s line of sight using imaging radar instead of visible light. The signal loss at smooth surfaces is much lower for radar systems, and radar is a proven technology for tracking objects. The challenge is that radar’s spatial resolution—used for picturing objects around corners such as cars and bikes—is relatively low. However, the researchers believed that they could create algorithms to interpret the radar data to allow the sensors to function.

The algorithms that we developed are highly efficient and fit on current generation automotive hardware systems. So, you might see this technology already in the next generation of vehicles.

—Felix Heide

To allow the system to distinguish objects, Heide’s team processed part of the radar signal that standard radars consider background noise rather than usable information. The team applied artificial intelligence techniques to refine the processing and read the images. Fangyin Wei, a graduate student in computer science and one of the paper’s lead authors, said the computer running the system had to learn to recognize cyclists and pedestrians from a very sparse amount of data.

Wei said the system currently detects pedestrians and cyclists because the engineers felt those were the most challenging objects because of their small size and varied shape and motion. She said the system could be adjusted to detect vehicles as well.

Heide said the researchers plan to follow the research in a number of directions for applications involving both radar and refinements in signal processing. He said the system has the potential to radically improve automotive safety. Since it relies on existing radar sensor technology, readying the radar system for deployment in the next generation of automobiles should be possible.

Besides Heide and Wei, the paper's authors include: Jürgen Dickmann, Florian Krause, Werner Ritter, and Nicolas Schiener of Mercedes-Benz AG; Buu Phan and Fahim Mannan of Algolux; Klaus Dietmayer of Ulm University; and Bernard Sick of the University of Kassel. Support for the research was provided in part by the European Union’s H2020 ECSEL program.



Jason Burr

How about this? Instead of getting a complete ID on the object, just get closing motion and size threshold? So the system will warn if an object is moving towards a collision and if object is bigger or smaller (person vs truck).


With smart cars and intersections we can reduce traffic injuries.

Mike Urseth

I am pretty certain that some of my Catholic school teachers (nuns, naturally) possessed this ability back in the day.

The comments to this entry are closed.