Western Australia to invest $22M to accelerate renewable hydrogen future
Velodyne Lidar partnering with U Nevada, Reno to advance research in transportation infrastructure

UGA study links heavy-metal contamination to antibiotic resistance

Using a process known as genomic analysis, University of Georgia scientists have found a strong correlation between antibiotic resistance and heavy metal contamination in an environment.

Jesse C. Thomas IV, an alumnus of the College of Public Health and the Savannah River Ecology Laboratory, found commonalities in soils contaminated with heavy metals on the US Department of Energy's Savannah River Site near Aiken, South Carolina. According to the study, published in an open-access paper in the journal Microbial Biotechnology, soils with heavy metals had a higher level of specific bacterial hosts that were accompanied by antibiotic-resistant genes.

Hosts included Acidobacteriaoceae, Bradyrhizobium and Streptomyces. The bacteria had antibiotic-resistant genes, known as ARGs, for vancomycin, bacitracin and polymyxin. All three drugs are used to treat infections in humans.

The bacteria also had an ARG for multidrug resistance, a strong defense gene that can resist heavy metals as well as antibiotics, according to Thomas, who was conducting his doctoral research at the time.

When these ARGs were present in the soil, metal-resistant genes, or MRGs, were present for several metals including arsenic, copper, cadmium and zinc.

Thomas, currently a biologist at the Centers for Disease Control and Prevention (CDC), said microorganisms develop new strategies and countermeasures over time to protect themselves.

The overuse of antibiotics in the environment adds additional selection pressure on microorganisms that accelerates their ability to resist multiple classes of antibiotics. But antibiotics aren’t the only source of selection pressure. Many bacteria possess genes that simultaneously work on multiple compounds that would be toxic to the cell, and this includes metals.

—Jesse Thomas

Travis Glenn, professor in the public health college, advised Thomas during the study. He said more research needs to be done to determine if metal-resistant genes respond in the same way to bacteria as antibiotic-resistant genes.

Unlike antibiotics, heavy metals don’t degrade in the environment so “they can exert long-standing pressure,” according to Glenn, who also directs the Institute of Bioinformatics.

The study reports previous research identified antibiotic-resistance in heavy metal-contaminated streams on the site by examining water samples in the lab.

When you expose the sample to a drug on a petri dish or assay, it only represents a fraction. This doesn’t give you a complete picture. With genomic analysis we were able to get much further.

—Jesse Thomas

The significance of the research is they can start to characterize bacterial communities and specific ARG and MRG genes in the environment, Glenn said.

It is clear that there are several human pathogens that develop antibiotic resistance—overuse is not the only cause, according to Thomas. Human activities like agriculture and the combustion of fossil fuels play a role.


  • Jesse C. Thomas IV Adelumola Oladeinde Troy J. Kieran John W. Finger Jr. Natalia J. Bayona‐Vásquez John C. Cartee James C. Beasley John C. Seaman J Vuan McArthur Olin E. Rhodes Jr. Travis C. Glenn (2020) “Co‐occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site” Microbial Biotechnology 13 (4), 1179–1200 doi: 10.1111/1751-7915.13578


The comments to this entry are closed.