Innoviz Technologies introduces next-gen InnovizTwo; major cost reduction of high-end LiDAR
ArcelorMittal selected as the sole Gen 3 steel supplier for the 2021 Ford Bronco

PNNL team uses ShAPE to increase conductivity of copper wire by ~5%; graphene composite

Researchers at Pacific Northwest National Laboratory (PNNL) have increased the conductivity of copper wire by about 5%—a development that can increase motor efficiency. Higher conductivity also means that less copper is needed for the same efficiency, which can reduce the weight and volume of various components for EVs.

Using a new, patented and patent-pending manufacturing platform developed at PNNL, researchers added graphene to copper and produced wire. The increase in conductivity compared to pure copper is made possible by a first-of-its-kind machine that combines and extrudes metal and composite materials, including copper.

PNNL teamed with General Motors to test out the enhanced copper wire for use in vehicle motor components. As part of a cost-shared research project, the team validated the increased conductivity and found that it also has higher ductility.

In other physical properties, it behaved just like regular copper so it can be welded and subjected to other mechanical stresses with no degradation of performance. This means that no specialized manufacturing methods are necessary to assemble motors—only the new advanced PNNL copper composite.

The technology can apply to any industry that uses copper to move electrical energy, including power transmission, electronics, wireless chargers, electric motors, generators, under-sea cables, and batteries.

PNNL’s Shear Assisted Processing and Extrusion (ShAPE) process can improve the performance of materials extruded through the process. Oppositional, or shear, force is applied by rotating a metal or composite as it is pushed through a die to create a new form. This novel, energy-efficient approach creates internal heating by deforming the metal, which softens it and allows it to form into wires, tubes, and bars.

ShAPE is the first process that has achieved improved conductivity in copper at the bulk scale, meaning it can produce materials in a size and format that industry currently uses, like wires and bars. The benefit of adding graphene to copper has been investigated before, but these efforts have primarily focused on thin films or layered structures that are extremely costly and time consuming to make. The ShAPE process is the first demonstration of considerable conductivity improvement in a copper-graphene composites made by a truly scalable process.

—Glenn Grant, principal investigator

According to a 2018 US Department of Energy report on electric vehicles, there is a need for improved motor efficiency to increase power density for electric vehicles. Additionally, components need to fit within increasingly smaller spaces available in the vehicle. But reducing motor volume is limited by the materials used in current electric vehicles and electrical conductivity limitations of copper windings.

Adding graphene to copper has proved difficult because the additives do not blend uniformly, creating clumps and pore spaces within the structure. But the ShAPE process eliminates pore spaces while also distributing the additives within the metal uniformly, which may be the reason for improved electrical conductivity.

ShAPE’s uniform dispersion of the graphene is the reason only really tiny amounts of additive are needed—about 6 parts per million of graphene flakes—to get a substantial improvement of 5 percent in conductivity. Other methods require large quantities of graphene, which is very expensive to make, and still have not approached the high conductivity we’ve demonstrated at a bulk scale.

—PNNL material scientist Keerti Kappagantula

General Motors Research and Development engineers verified the higher conductivity copper wire can be welded, brazed, and formed in exactly the same way as conventional copper wire. This indicates seamless integration with existing motor manufacturing processes.

To further lightweight motors, advances in materials is the new paradigm. Higher conductivity copper could be a disruptive approach to lightweighting and/or increasing efficiency for any electric motor or wireless vehicle charging system.

—Darrell Herling of PNNL’s Energy Processes and Materials Division

ShAPE is part of PNNL’s suite of solid phase processing solutions for industry. PNNL is interested in collaborating with partners to develop and demonstrate the ShAPE technology for additional applications of high conductivity metals. The technology is available for licensing and collaboration opportunities.



Instead of looking backwards and attempting to improve the past why not look forwards and improve the future. The carbon allotrope - graphene and its amazing attributes - was discovered in 2006 or 14 years ago. In this time, research has been unable to produce a graphene yarn suitable to replace the copper windings and improve the performance beyond description of an e-motor. What a failure!


I have not seen a cheap way to making tons of graphene.


Yes I agree; they've had only fourteen years to gain some headway.


BTW, there is still enough time, effort, and money being invested in the improvement of the ICE. What a waste!

The comments to this entry are closed.