Biden says he will convert Federal fleet to electric vehicles
Amazon invests in electrofuels company Infinium

MIT researchers boost efficiency of carbon capture and conversion systems

Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions.

Such catalytic systems are an attractive option for carbon capture because they can produce useful, valuable products such as transportation fuels or chemical feedstocks. This output can help to subsidize the process, offsetting the costs of reducing greenhouse gas emissions.

In these systems, typically a stream of gas containing carbon dioxide passes through water to deliver carbon dioxide for the electrochemical reaction. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide. The new design ensures that the carbon dioxide stream stays concentrated in the water right next to the catalyst surface. This concentration, the researchers have shown, can nearly double the performance of the system.

The results are described in the journal Cell Reports Physical Science in an open-access paper by MIT postdoc Sami Khan PhD ’19, who is now an assistant professor at Simon Fraser University, along with MIT professors of mechanical engineering Kripa Varanasi and Yang Shao-Horn, and recent graduate Jonathan Hwang PhD ’19.

Electrochemical reduction of carbon dioxide (CO2RR) is an attractive approach toward converting CO2 to solar fuels. Novel catalyst chemistries and morphologies may provide high selectivity to both one-carbon (C1) and two-carbon (C2) products over hydrogen; however, the limited aqueous solubility of CO2 restricts the CO2RR current density.

Here, we demonstrate how gasphilic bubble-trap surfaces enhance mass transfer and enrich and maintain CO2 concentration during CO2RR by forming a catalyst-proximal plastron layer, consequently increasing the CO2RR activity on both smooth and nanostructured copper as compared to the conventional headspace or bubbling modes of CO2 delivery.

The H2 Faradaic efficiency is suppressed from 33% to 13% on smooth copper and from 62% to 33% on nanostructured copper, accompanied by enhanced formation of C2+ products, including ethylene, propanol, and ethanol, and >1% acetone and acetate. We highlight the importance of the catalyst-proximal plastron approach by comparing against recent aqueous-phase CO2RR studies.

—Khan et al.

Fx1_lrg

Source: Kahn et al.

The bottleneck turned out to involve the delivery of the carbon dioxide to the catalytic surface that promotes the desired chemical transformations, the researchers found. In these electrochemical systems, the stream of carbon dioxide-containing gases is mixed with water, either under pressure or by bubbling it through a container outfitted with electrodes of a catalyst material such as copper. A voltage is then applied to promote chemical reactions producing carbon compounds that can be transformed into fuels or other products.

There are two challenges in such systems: The reaction can proceed so fast that it uses up the supply of carbon dioxide reaching the catalyst more quickly than it can be replenished; and if that happens, a competing reaction—the splitting of water into hydrogen and oxygen—can take over and sap much of the energy being put into the reaction.

Previous efforts to optimize these reactions by texturing the catalyst surfaces to increase the surface area for reactions had failed to deliver on their expectations, because the carbon dioxide supply to the surface couldn’t keep up with the increased reaction rate, thereby switching to hydrogen production over time.

The researchers addressed these problems through the use of a gas-attracting surface placed in close proximity to the catalyst material. This material is a specially textured “gasphilic,” superhydrophobic material that repels water but allows a smooth layer of gas called a plastron to stay close along its surface.

It keeps the incoming flow of carbon dioxide right up against the catalyst so that the desired carbon dioxide conversion reactions can be maximized. By using dye-based pH indicators, the researchers were able to visualize carbon dioxide concentration gradients in the test cell and show that the enhanced concentration of carbon dioxide emanates from the plastron.

In a series of lab experiments using this setup, the rate of the carbon conversion reaction nearly doubled. It was also sustained over time, whereas in previous experiments the reaction quickly faded out. The system produced high rates of ethylene, propanol, and ethanol. Meanwhile, the competing hydrogen evolution was sharply curtailed. Although the new work makes it possible to fine-tune the system to produce the desired mix of product, in some applications, optimizing for hydrogen production as a fuel might be the desired result, which can also be done.

By concentrating the carbon dioxide next to the catalyst surface, the new system also produced two new potentially useful carbon compounds, acetone, and acetate, that had not previously been detected in any such electrochemical systems at appreciable rates.

In this initial laboratory work, a single strip of the hydrophobic, gas-attracting material was placed next to a single copper electrode, but in future work a practical device might be made using a dense set of interleaved pairs of plates, Varanasi suggests.

The research was supported by the Italian energy firm Eni S.p.A through the MIT Energy Initiative, and a NSERC PGS-D postgraduate scholarship from Canada.

Resources

  • Sami Khan, Jonathan Hwang, Yang-Shao Horn, Kripa K. Varanasi (2021) “Catalyst-proximal plastrons enhance activity and selectivity of carbon dioxide electroreduction,” Cell Reports Physical Science doi: 10.1016/j.xcrp.2020.100318

Comments

The comments to this entry are closed.