ABB to provide power and propulsion solution for 10 all-electric ferries
NVIDIA’s automotive pipeline now exceeds $8B for DRIVE AI-based mobility solutions

New partnership to advance high-temperature PEM fuel cells; focus on heavy-duty applications

A new partnership comprising Los Alamos National Laboratory, Advent Technology Holdings Inc., Brookhaven National Laboratory, and the National Renewable Energy Laboratory (NREL) will work over the next few years to bring to market high-temperature proton exchange membrane (HT-PEM) fuel cells.

Traditional PEM fuel cells have a relatively low operating temperature, which makes for a low tolerance to hydrogen fuel impurities and makes waste-heat rejection a challenge for vehicles.

51103464199_7af73b1707_o

Artist’s concept of a heavy-duty vehicle equipped with high-temperature proton exchange membrane (HT-PEM) fuel cells.


As the heavy-duty transportation industry seeks greener alternatives to combustion engines, HT-PEM fuel cells promise a clean, efficient alternative.

—Rod Borup, Los Alamos program manager for Fuel Cells and Vehicle Technology

HT-PEM fuel cells have potential to revolutionize the heavy-duty transportation industry. They can allow ships to run on renewable methanol or ammonia, airplanes to run on dimethyl ether or hydrogen, and off-grid power generators to work with low- or zero-carbon fuels that are easily transportable to remote locations.

The ability to use any hydrogen-carrying fuel, in addition to pure hydrogen, is a major breakthrough in reducing the required infrastructure investments. HT-PEM fuel cell technology would allow heavy-duty and other hard-to-decarbonize applications to operate with high efficiency while using hydrogen and mitigating water management problems.

The project received strong funding support from the Department of Energy’s (DOE’s) Hydrogen and Fuel Cell Technologies Office through the L’Innovator (“Lab Innovator”) Pilot Program, which is designed to address specific challenges associated with the transition of hydrogen and fuel cell technologies from DOE’s national laboratories into the commercial marketplace. Breakthroughs coming out of this effort will help to enable DOE’s H2@Scale vision for clean and affordable hydrogen utilization across multiple sectors in the economy.

Los Alamos’ contribution to the project is the membrane electrode assembly (MEA). The MEA is unique because it doesn’t rely on water as the conducting medium, but on an engineered polymer, which allows for a wider range of high temperatures for reliable operation (80 ˚C to 200 ˚C).

At high-temperature operation, we can build heavy-duty trucks with a much simpler design, which allows us to significantly reduce the weight. The heaviest part of the typical hydrogen fuel-cell system is the hydrogen storage tanks that weigh about 4,000 pounds to haul for a distance of 350 miles. If you run fuel cells at a higher operating temperature, you can use high-energy-density liquid fuels and the system weight can be reduced to 2,500 pounds.

—Yu Seung Kim, a Los Alamos scientist who started an automotive HT-PEM fuel cells project in 2017

The partnership formalizes each party’s role and the next steps to creating a viable product. Kim’s team at Los Alamos will be responsible for demonstrating MEA performance and durability using screening tests of membrane, ionomer, catalyst, and gas diffusion layers.

The resulting knowledge will be transferred to NREL to help develop the manufacturing process for mass production of MEAs. Brookhaven Lab is responsible for developing oxygen reduction reaction catalysts, while Advent will test and validate that performance and durability are maintained during industrial manufacturing conditions and will assemble the full-scale MEAs into a commercially viable fuel cell stack.

Comments

Davemart

Weird illustration.
They are talking about using liquid fuels, and illustrate hydrogen tanks.

gryf

What about LOHC (Liquid Organic Hydrogen Carrier)? It is both liquid and and a hydrogen tank. Read about Hyundai Motor investing in Hydrogenious LOHC Technologies for developmen of stationary and on-board LOHC-systems (https://www.hydrogenious.net/index.php/en/2020/08/28/shift-mobility/).
LOHC and Magnesium Hydride H2 storage would make good use of the waste heat of HT PEM fuel cells.

SJC

Bio DME is liquid at lower pressure.

dursun

Doesn't say if it uses Platinum. That's still problem

SJC

HTPEM has none on the cathode,

gryf

Los Alamos’ contribution to the project is the membrane electrode assembly (MEA).
More detail can be read here:
https://arpa-e.energy.gov/technologies/projects/stable-diacid-coordinated-quaternary-ammonium-polymers-80-150degc-fuel-cells.
"Los Alamos National Laboratory will develop proton exchange membrane (PEM) fuel cells for light-duty vehicles that operate on hydrogen or dimethyl ether (DME) fuel in the temperature range of 80-230°C (176-446°F) without first warming or humidifying the incoming fuel stream. "
Advent Technologies, one of the partners on this project claims a 10x reduction of Platinum (https://www.advent.energy/products-high-temperature-meas/).

SJC

BOP/TCO is lower, no radiators nor pumps at 100C+

The comments to this entry are closed.