All-electric BMW iX and i4 first BMWs with 5G support
Maryland, Georgia suspend state gasoline and diesel tax

Ames Lab, Texas A&M team develop AI tool for discovery and prediction of new rare-earth compounds

Researchers from Ames Laboratory and Texas A&M University have trained a machine-learning (ML) model to assess the stability of new rare-earth compounds. The framework they developed builds on current state-of-the-art methods for experimenting with compounds and understanding chemical instabilities. A paper on their work is published in Acta Materialia.

Machine learning is really important here because when we are talking about new compositions, ordered materials are all very well known to everyone in the rare earth community. However, when you add disorder to known materials, it’s very different. The number of compositions becomes significantly larger, often thousands or millions, and you cannot investigate all the possible combinations using theory or experiments.

—Ames Laboratory Scientist Prashant Singh, corresponding author

The approach is based on machine learning (ML), a form of artificial intelligence (AI), which is driven by computer algorithms that improve through data usage and experience. Researchers used the upgraded Ames Laboratory Rare Earth database (RIC 2.0) and high-throughput density-functional theory (DFT) to build the foundation for their ML model.

High-throughput screening is a computational scheme that allows a researcher to test hundreds of models quickly. DFT is a quantum mechanical method used to investigate thermodynamic and electronic properties of many body systems. Based on this collection of information, the developed ML model uses regression learning to assess phase stability of compounds.

Singh explained that the material analysis is based on a discrete feedback loop in which the AI/ML model is updated using new DFT database based on real-time structural and phase information obtained from experiments. This process ensures that information is carried from one step to the next and reduces the chance of making mistakes.


Singh et al.

Yaroslav Mudryk, the project supervisor, said that the framework was designed to explore rare earth compounds because of their technological importance, but its application is not limited to rare-earths research. The same approach can be used to train an ML model to predict magnetic properties of compounds, process controls for transformative manufacturing, and optimize mechanical behaviors.

It’s not really meant to discover a particular compound. It was, how do we design a new approach or a new tool for discovery and prediction of rare earth compounds? And that’s what we did.

—Yaroslav Mudryk

Mudryk emphasized that this work is just the beginning. The team is exploring the full potential of this method, but they are optimistic that there will be a wide range of applications for the framework in the future.

This work was supported by Laboratory Directed Research and Development Program (LDRD) program at Ames Laboratory.


  • Prashant Singh, Tyler Del Rose, Guillermo Vazquez, Raymundo Arroyave, Yaroslav Mudryk (2022) “Machine-learning enabled thermodynamic model for the design of new rare-earth compounds,” Acta Materialia, Volume 229, 117759 doi: 10.1016/j.actamat.2022.117759


The comments to this entry are closed.