BMW M GmbH begins road testing for innovative high-performance electric drive and chassis control systems
NHTSA early estimates show record increase in traffic fatalities nationwide

Toyota Research Institute and Northwestern partner to accelerate new materials discovery with nanomaterial data factory; fuel cell catalysts first

Toyota Research Institute (TRI) and Northwestern University are collaborating to help accelerate new materials discovery, design and development with the world’s first nanomaterial “data factory.”

This AI-driven methodology goes beyond the traditional trial and error by exploring vast parameter sets, collecting data and then empowering AI to search the materials genome to find the best materials for a given application. While the first application of the data factory will be used to discover new catalysts to make fuel cell vehicles more efficient, TRI and Northwestern believe this method of materials discovery will have wide-ranging applications in the future such as clean hydrogen production, CO2 removal from air and high-efficiency solar cells.

This groundbreaking research marks an inflection point in how we discover and develop critical materials. Together with TRI, we’re poised to empower the scientific community to find the best materials that can truly power the clean energy transition.

—Chad Mirkin, director of the International Institute for Nanotechnology and the George B. Rathmann Professor of Chemistry at Northwestern

TRI and Northwestern developed a machine-learning algorithm capable of synthesizing materials at record speeds to sift through Northwestern’s new Megalibraries—a library containing more new inorganic materials than scientists have ever collected and categorized. (Earlier post.)

Together, these concepts create the first nanomaterial data factory—a groundbreaking effort to create and mine large sets of high-quality, complex first-party data. The team is using this new approach to find catalysts that can be used instead of expensive, rare materials on which the world currently depends, such as platinum and iridium.

Prior to this collaboration, machine learning algorithms have been trained on lower-quality, inconsistently-gathered data sets. Now, with Northwestern and TRI’s new capabilities, high-quality data sets can be used by the team to train complex algorithms that enable the rapid and objective discovery of crucial materials for unmet needs.


  • Kluender, Edward et al. (2018) “Catalyst discovery through megalibraries of nanomaterials” PNAS doi: 10.1073/pnas.1815358116


Mills Audin

Now, researchers at the University of Houston have discovered a new mechanism to increase the strength and ductility of high-entropy alloys. The study found that varying the temperature and pressure of a high-entropy alloy at the nano-scale level can change the properties of the material. This discovery could be used to develop new high-strength and high-ductility alloys for aerospace, automotive, and other industries. Well, I would love to read article in order to find the best writer for nursing assignment help online.

The comments to this entry are closed.