Duke Energy to build and operate system capable of producing, storing and combusting 100% green hydrogen in a combustion turbine
Univ of Tokyo team designs new Li-ion battery with cobalt-free cathode and silicon oxide anode

Study suggests aircraft batteries could loose up to 45% utility in one year

As battery-powered aircraft are being developed for commuter flights in urban environments, the rate of degradation will be an important consideration. University of Illinois Urbana-Champaign aerospace engineer Matthew Clarke developed a model of battery degradation, then used the model to simulate four different electric vehicles in real metropolitan scenarios.

To make accurate comparisons, all four of the aircraft in the simulation were designed to carry six passengers or an equivalent payload of 925 pounds.

Depending on the specific design of the aircraft, its range, and battery size, its utility can fall by as much as 45% when operating continuously for one year.

—Matthew Clarke

Because most of the degradation occurs when cruising, Clarke suggests the performance of the aircraft can be extended by modifying the routes over time.

So, say an aircraft can fly 100 nautical miles for 80 days before the battery is no longer viable. But if you flew a shorter distance, say 80 nautical miles, you could fly for about 200 days. We can change the operational envelope by changing the routes before it’s necessary to completely swap out the battery. This maximizes the utility of the aircraft.

—Matthew Clarke

Clarke simulated commuter routes between airports in four metropolitan areas: New York, Dallas-Fort Worth, the San Francisco Bay area, and Los Angeles.

An aircraft could fly between JFK and Washington D.C. for the first 100 days, then switch to flying from JFK to Philadelphia for the next 100 days or so before the aircraft needs to undergo maintenance and a new battery installed.

—Matthew Clarke

The study’s time-dependent aircraft performance over operational lifetime diagram is different from most performance diagrams because it captures the fact that the energy degrades over time.

Conventional fuel degrades per flight. If you put new fuel in it at the end of the flight the aircraft will perform as if it was day zero. There’s no time dependency.

—Matthew Clarke

While running the simulation, Clarke discovered an angle he hadn’t considered until he observed something odd happening at a specific spot each time.

We use atmospheric air to cool batteries—something you don’t have to think about with jet fuel. I hadn’t considered that if the model is simulating an entire year, the atmospheric temperature will change with the seasons. That means the operating heat dissipation systems have to change, too. I used a model for the atmospheric temperature variation that changes every day of the year depending upon where you are in the world.

—Matthew Clarke

Clarke said the next step is to do further study on optimal battery and electro-mechanical device thermal management systems.

Now that we have an understanding of the battery degradation and the thermal effects, we are working to design heat exchangers and mechanisms for cooling batteries on board electric aircraft to keep them operating in a safe temperature range.

—Matthew Clarke


  • Matthew A. Clarke and Juan J. Alonso (2022) “Forecasting the Operational Lifetime of Battery-Powered Electric Aircraft” Journal of Aircraft doi: 10.2514/1.C036851



Since I do not have access to the journal, I have no idea whether he has assumed fast charging.

I have long argued that in the application with present battery technology battery swapping is a more viable option, as it greatly decreases battery wear.

Of course, the observation that 'most of the battery degradation occurs when cruising' would appear to be contrary to that, as there is no mention of degradation when charging,.

Basically it seems the information he has provided gives little grounds to work out what is going on.

The comments to this entry are closed.