Scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new electrocatalyst that can directly convert carbon dioxide into multicarbon fuels and alcohols using record-low inputs of energy. The work is the latest in a round of studies coming out of Berkeley Lab tackling the... Read more →


Ballard Power Systems has collaborated with Nisshinbo Holdings to develop a Non-Precious-Metal Catalyst (NPMC) for use in the world’s first commercialized NPMC-based proton exchange membrane (PEM) fuel cell product. Nisshinbo and Ballard have jointly collaborated on the development of NPMC since 2013. (Earlier post.) Ballard has successfully incorporated the Non... Read more →


Researchers at the Tokyo Institute of Technology have developed a highly selective catalyst consisting of ruthenium nanoparticles supported on niobium pentoxide (Ru/Nb2O5). In a study published in the Journal of the American Chemical Society, the team demonstrated that Ru/Nb2O5 is capable of producing primary amines from carbonyl compounds with ammonia... Read more →


Researchers led by a team from KAUST have found a more sustainable route to hydrogen fuel production using chaotic, light-trapping materials that mimic natural photosynthetic water splitting. In a paper in the journal Advanced Materials, the researchers report a new photocatalyst for hydrogen evolution based on metal epsilon-near-zero (ENZ) metamaterials.... Read more →


Researchers develop cheaper, greener biofuels processing catalyst using waste metals and bacteria

A team from the Prairie Research Institute at the University of Illinois, with colleagues from the University of Birmingham and Aarhus University, have developed a nanosized bio-Pd/C catalyst for upgrading algal bio-oil. Published in an open-access paper in the journal Fuel, their findings point to a cheaper, more environmentally friendly... Read more →


Purdue, Notre Dame, Cummins discovery could lead to new SCR catalyst design for improved NOx control

Researchers at Purdue University, the University of Notre Dame and Cummins have discovered a new reaction mechanism that could be used to improve SCR catalyst designs for pollution-control systems to further reduce emissions of smog-causing nitrogen oxides in diesel exhaust. The research focuses on zeolites—workhorses in petroleum and chemical refineries... Read more →


A team at the University of Delaware has synthesized renewable jet-fuel-range alkanes by hydrodeoxygenation of lignocellulose-derived high-carbon furylmethanes over ReOx-modified Ir/SiO2 catalysts under mild reaction conditions (170 ˚C, 5 MPa). Their paper is featured on the cover of the journal ChemSusChem. In their work, they found that Ir−ReOx/SiO2 with a... Read more →


ORNL, LANL study provides insights into performance of non-precious metal fuel-cell catalysts; atomic-level observations

In order to reduce the cost of next-generation polymer electrolyte fuel cells for vehicles, researchers have been developing alternatives to the prohibitively expensive platinum and platinum-group metal (PGM) catalysts currently used in fuel cell electrodes. New work at Los Alamos (LANL) and Oak Ridge national laboratories (ORNL) is now resolving... Read more →


Researchers in the Rice University lab of chemist James Tour have produced dual-surface laser-induced graphene (LIG) electrodes on opposing faces of a plastic sheet that split water into hydrogen on one side and oxygen on the other side. The high porosity and electrical conductivity of LIG facilitates the efficient contact... Read more →


Scientists at Rice University and the Lawrence Livermore National Laboratory have predicted and created new two-dimensional electrocatalysts—low-cost, layered transition-metal dichalcogenides (MX2) based on molybdenum and tungsten—to extract hydrogen from water with high performance and low cost. In the process, they also created a simple model to screen materials for catalytic... Read more →


An international research team led by scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Nanyang Technological University (NTU) in Singapore have developed a light-activated material that can chemically convert carbon dioxide into carbon monoxide without generating unwanted byproducts. When exposed to visible light, the material,... Read more →


Japan team reports pathway to green ammonia: photocatalytic conversion of nitrogen with water

Researchers in Japan report that a commercially available TiO2 with a large number of surface oxygen vacancies, when photo-irradiated by UV light in pure water with nitrogen—successfully produces ammonia (NH3). The solar-to-chemical energy conversion efficiency is 0.02%, which is the highest efficiency among the early reported photocatalytic systems. This is,... Read more →


A new robust and highly active bifunctional catalyst developed by Rice University and the University of Houston splits water into hydrogen and oxygen without the need for expensive metals such as platinum. The work, the team suggests, provides a facile strategy for fabricating highly efficient electrocatalysts from earth-abundant materials for... Read more →


QUB team converts aluminum foil waste to highly active alumina; biofuel catalyst, other applications

Researchers at Queen’s University Belfast have developed a novel green route to convert aluminium foil waste into highly active nano-mesoporous alumina (γ-Al2O3) (designated as ACFL550). The material shows higher surface area, larger pore volume, and stronger acidity compared to γ-Al2O3 that is produced from the commercial AlCl3 precursor, AC550. An... Read more →


German team clarifies key catalytic step in enzymatic production of hydrogen

Enzymes, called [FeFe]-hydrogenases, efficiently turn electrons and protons into hydrogen; they are thus a candidate for the biotechnological production of the potential energy source. For years, researchers had assumed that a highly unstable intermediate state had to exist in the reaction. No one was able to verify this. Until now.... Read more →


New catalyst supports ultra-low-temperature water-gas-shift reaction for hydrogen production

Researchers from China and the US have synthesized gold layered clusters on an α-MoC substrate to create an interfacial catalyst system for the ultra-low-temperature water-gas shift (WGS) reaction for the production of high-purity hydrogen and concomitant utilization of carbon monoxide (CO). The discovery, described in a paper in the journal... Read more →


U Minn seeking to license new process to produce isoprene from biomass at high yield; green tires

Researchers from the University of Minnesota, with colleagues at the University of Massachusetts Amherst, have developed a new high-yield process—a hybrid of fermentation followed by thermochemical catalysis—to produce renewable isoprene from biomass. In the process, fermentation of sugars produces itaconic acid, which undergoes catalytic hydrogenation to produce 3-methyltetrahydrofuran (MTHF). The... Read more →


Scientists at Rice University and their colleagues in China have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to nitrogen-doped graphene. Catalysts that drive the oxygen reduction reaction in fuel cells are usually made of platinum. Platinum is expensive, however, and scientists have searched for... Read more →


Osaka team develops new solar-to-hydrogen catalyst that uses broader spectrum of light

A team at Osaka University in Japan has developed a new material based on gold and black phosphorus to harvest a broader spectrum of sunlight for water-splitting to produce hydrogen. The three-part composite maximizes both absorbing light and its efficiency for water splitting. The core is a traditional semiconductor—lanthanum titanium... Read more →


Kyushu team develops multifunctional catalyst for poison-resistant hydrogen fuel cells; both H2 and CO as fuel

Researchers at Kyushu University, Japan, have developed the first catalyst that can oxidize both hydrogen and carbon monoxide, depending on the pH of the reaction system. Carbon monoxide is a common pollutant in commercially available hydrogen gas but it poisons the platinum catalysts used in today’s fuel cells. A paper... Read more →


New efficient, low-temperature catalyst for converting water and CO to hydrogen and CO2

Scientists in the US and China have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO) via the water-gas shift (WGS) reaction. The discovery—described in a paper in the journal Science—could improve the performance of fuel cells that run on hydrogen fuel... Read more →


DOE awarding $2M to CMU-led project to develop PGM-free cathodes for fuel cells

The US Department of Energy is awarding roughly $15.8 million for 30 projects working toward the discovery and development of innovative, low-cost materials needed for hydrogen production and storage and for automotive fuel cells (earlier post). Of those 30 projects, Carnegie Mellon University Mechanical Engineering Associate Professor Shawn Litster has... Read more →


Stanford team develops copper catalyst for increased selectivity of production of ethanol via electroreduction of CO2

Researchers at Standford University have designed large-format, thin-film copper catalysts for the electroreduction of CO2 to ethanol. The results are published in Proceedings of the National Academy of Sciences. “One of our long-range goals is to produce renewable ethanol in a way that doesn’t impact the global food supply. Copper... Read more →


Researchers at KAUST have developed a novel molybdenum-coated catalyst that can efficiently split water in acidic electrolytes and that could help with the efficient production of hydrogen. Scientists are searching for ways of improving the water-splitting reaction by developing an optimal catalyst. While many different materials have been tried, they... Read more →


EPFL team develops low-cost catalyst for splitting CO2

EPFL scientists have developed an Earth-abundant and low-cost catalytic system for splitting CO2 into CO and oxygen—an important step towards achieving the conversion of renewable energy into hydrocarbon fuels. A solar-driven system set up using this catalyst was able to split CO2 with an efficiency of 13.4%. A paper on... Read more →


UNSW Sydney chemists have fabricated a new, inexpensive catalyst for water splitting based on an ultrathin nanosheet array of metal-organic frameworks (MOFs) on different substrates. Their nickel-iron-based metal-organic framework array (NiFe-MOF) demonstrates superior electrocatalytic performance towards the oxygen evolution reaction (OER) with a small overpotential of 240 mV at 10 mA cm−2 and... Read more →


Scientists have been trying to artificially replicate photosynthesis to convert solar energy to stored chemical energy, with the objective of producing environmentally friendly and sustainable fuels, such as hydrogen and methanol. However, mimicking key functions of the photosynthetic center, where specialized biomolecules carry out photosynthesis, has proven challenging. Artificial photosynthesis... Read more →


The high-performance, three-way catalytic (TWC) converter is one of the workhorses of emissions reduction for gasoline engines. The TWC reduces NOx to nitrogen and oxygen; oxidizes CO to CO2, and oxidizes unburnt hydrocarbons to carbon CO2 and water. However, TWCs require the use of the rare-earth element Cerium (Ce), which... Read more →


Penn State, FSU team develops low-cost, efficient layered heterostructure catalyst for water-splitting

A team of scientists from Penn State and Florida State University have developed a lower cost and industrially scalable catalyst consisting of synthesized stacked graphene and WxMo1–xS2 alloy phases that produces pure hydrogen through a low-energy water-splitting process. The results of their study, published in the journal ACS Nano, indicate... Read more →


Argonne researchers make vanadium into a useful low-cost catalyst for hydrogenation

Researchers at the US Department of Energy’s Argonne National Laboratory have developed an unusually active form of vanadium for hydrogenation reactions. Vanadium is an inexpensive common metal that could replace some of the precious metals currently found in catalysts used in these reactions, frequently used in processing of fuels (petro-... Read more →


Bochum chemists develop method to produce self-healing catalyst films for hydrogen production

Chemically aggressive conditions prevail during the electrochemical splitting of water to produce hydrogen, wearing out the catalysts used. Further, engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a notorious challenge. Now, chemists at the Centre for Electrochemical Sciences at Ruhr-Universität Bochum (RUB) have devised an... Read more →


Researchers from Chalmers University of Technology and Technical University of Denmark have shown that thin alloy films of single-target co-sputtered platinum-yttrium exhibit up to 7x higher specific activity (13.4 ± 0.4 mA cm−2) for the oxygen reduction reaction (ORR) in fuel cells than polycrystalline platinum, and up to one order... Read more →


A group of Japanese researchers has developed a novel photocatalyst for increased hydrogen production. The strontium titanate mesocrystal exhibits three times the efficiency for hydrogen evolution compared to conventional disordered systems in alkaline aqueous solution. The mesocrystal also exhibits a high quantum yield of 6.7% at 360 nm in overall... Read more →


UH team develops new, highly efficient and durable OER catalyst for water splitting

Researchers at the University of Houston have developed a catalyst—composed of easily available, low-cost materials and operating far more efficiently than previous catalyst—that can split water into hydrogen and oxygen. The robust oxygen-evolving electrocatalyst consists of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale.... Read more →


Chemists from the US Department of Energy’s Brookhaven National Laboratory and their collaborators have definitively identified the active sites of a catalyst commonly used for making methanol from CO2. The results, published in the journal Science, resolve a longstanding debate about exactly which catalytic components take part in the chemical... Read more →


Researchers at the US Department of Energy’s (DOE’s) Ames Laboratory have discovered a method for making smaller, more efficient intermetallic nanoparticles for fuel cell applications, and which also use less of the expensive precious metal platinum. A paper on the work is published in the Journal of the American Chemical... Read more →


Water-splitting systems require a very efficient catalyst to speed up the chemical reaction that splits water into hydrogen and oxygen, while preventing the two gases from recombining back into water. Now an international research team has developed a new catalyst with a molybdenum (Mo) coating that prevents this problematic back... Read more →


A research team led by Dr. Jian Sun and Prof. Qingjie Ge at the Dalian Institute of Chemical Physics in China has developed an efficient, stable, and multifunctional Na-Fe3O4/HZSM-5 catalyst for the direct production of gasoline-range hydrocarbons from CO2 hydrogenation. This catalyst exhibited 78% selectivity to C5-C11 as well as... Read more →


Researchers at KAUST have developed and used a novel way of increasing the chemical reactivity of a two-dimensional molybdenum disulfide material to produce a cheap and effective catalyst for water splitting to produce hydrogen. This technique may also have potential benefits for other manufacturing industries. One route to hydrogen generation... Read more →


Elemental boron effective photothermocatalyst for the conversion of CO2 for fuels and chemicals

Researchers in Japan and China developed an efficient method for CO2 reduction over elemental boron catalysts in the presence of only water and light irradiation through a photothermocatalytic process. This could form the basis of a new, more efficient process for converting the greenhouse gas CO2 into a useful carbon... Read more →


A team of chemical and biological engineers at the University of Wisconsin–Madison has developed a new chemical pathway a way to produce from biomass a valuable compound—1,5-pentanediol, a plastic precursor primarily used to make polyurethanes and polyester plastics—that they estimate could lower the cost of cellulosic ethanol by more than... Read more →


China team develops highly efficient catalyst for low-temperature aqueous phase refoming of methanol to produce hydrogen

Researchers in China, along with colleagues in the US, have developed a new catalyst that shows outstanding hydrogen-production activity and stability in the low-temperature aqueous phase reforming of methanol (APRM). In a paper in the journal Nature, the team reports that platinum (Pt) atomically dispersed on α-molybdenum carbide (α-MoC) enables... Read more →


A group of Aalto University (Finland) researchers led by professors Tanja Kallio and Kari Laasonen has developed a manufacturing method for hydrogen evolution reaction (HER) electrocatalysts that use only one-hundredth of the amount of platinum generally used in commercial products. They achieved pseudo atomic-scale dispersion of Pt—i.e. individual atoms or... Read more →


Researchers at Rice University and the University of Houston created an efficient, simple-to-manufacture core/shell photoanode with a highly active oxygen evolution electrocatalyst shell (FeMnP) and semiconductor core (rutile TiO2) for the photoelectrochemical oxygen evolution reaction (PEC-OER) for solar water splitting. The lab of Kenton Whitmire, a Rice professor of chemistry,... Read more →


A team of scientists at the University of Cambridge has reported the light-driven photoreforming of cellulose, hemicellulose and lignin to H2 using semiconducting cadmium sulfide quantum dots in alkaline aqueous solution. The system operates under visible light, is stable beyond six days and is even able to reform unprocessed lignocellulose,... Read more →


Researchers at Indiana University Bloomington have synthesized a nanographene–Re (Rhenium) complex that functions as an efficient electrocatalyst and photocatalyst for the selective reduction of CO2 to CO for subsequent conversion to fuels. The complex can selectively electrocatalyze CO2 reduction to CO in tetrahydrofuran at −0.48 V vs NHE—the least negative... Read more →


Texas A&M team developing photocatalyst to turn CO2 into renewable hydrocarbon fuels

Researchers with the Department of Mechanical Engineering at Texas A&M University, led by Dr. Ying Li, associate professor of mechanical engineering, are developing a photocatalyst to convert CO2 into renewable hydrocarbon fuels. The photocatalyst material acts as a semiconductor, absorbing the sunlight which excites the electrons in the semiconductor and... Read more →


Duke University researchers have engineered rhodium nanoparticles that can harness the energy in ultraviolet light and use it to catalyze the conversion of carbon dioxide to methane, a key building block for many types of fuels. An open-access paper on the work is published in Nature Communications. Industrial-scale catalysis for... Read more →


Toyota Motor Corporation announced the commercial availability of a new, smaller three-way catalyst for the treatment of NOx, CO and unburned hydrocarbons from gasoline engines that uses 20% less precious metal in approximately 20% less volume, while maintaining the same exhaust gas purification performance. The catalyst uses the world’s first... Read more →


PNNL team develops fastest synthetic catalyst for H2 production; controlling structural dynamics for 1,000x performance boost

Using a natural catalyst from bacteria for inspiration, researchers at Pacific Northwest National Laboratory (PNNL) have now developed the fastest synthetic catalyst for hydrogen production—producing 45 million molecules per second—by controlling the structural dynamics of the molecular catalyst. Instead of a costly metal such as platinum, this catalyst uses inexpensive,... Read more →